"""Conformer block.""" from copy import deepcopy from typing import Optional from torch import nn, Tensor from text_recognizer.networks.conformer.conv import ConformerConv from text_recognizer.networks.conformer.mlp import MLP from text_recognizer.networks.conformer.scale import Scale from text_recognizer.networks.transformer.attention import Attention from text_recognizer.networks.transformer.norm import PreNorm class ConformerBlock(nn.Module): def __init__( self, dim: int, ff: MLP, attn: Attention, conv: ConformerConv, ) -> None: super().__init__() self.attn = PreNorm(dim, attn) self.ff_1 = Scale(0.5, ff) self.ff_2 = deepcopy(self.ff_1) self.conv = conv self.post_norm = nn.LayerNorm(dim) def forward(self, x: Tensor, mask: Optional[Tensor]) -> Tensor: x = self.ff_1(x) + x x = self.attn(x, mask=mask) + x x = self.conv(x) + x x = self.ff_2(x) + x return self.post_norm(x)