"""Vision transformer for character recognition.""" import math from typing import Tuple from torch import nn, Tensor from text_recognizer.networks.encoders.efficientnet import EfficientNet from text_recognizer.networks.transformer.layers import Decoder from text_recognizer.networks.transformer.positional_encodings import ( PositionalEncoding, PositionalEncoding2D, ) class ConvTransformer(nn.Module): """Convolutional encoder and transformer decoder network.""" def __init__( self, input_dims: Tuple[int, int, int], hidden_dim: int, dropout_rate: float, num_classes: int, pad_index: Tensor, encoder: EfficientNet, decoder: Decoder, ) -> None: super().__init__() self.input_dims = input_dims self.hidden_dim = hidden_dim self.dropout_rate = dropout_rate self.num_classes = num_classes self.pad_index = pad_index self.encoder = encoder self.decoder = decoder # Latent projector for down sampling number of filters and 2d # positional encoding. self.latent_encoder = nn.Sequential( nn.Conv2d( in_channels=self.encoder.out_channels, out_channels=self.hidden_dim, kernel_size=1, ), PositionalEncoding2D( hidden_dim=self.hidden_dim, max_h=self.input_dims[1], max_w=self.input_dims[2], ), nn.Flatten(start_dim=2), ) # Token embedding. self.token_embedding = nn.Embedding( num_embeddings=self.num_classes, embedding_dim=self.hidden_dim ) # Positional encoding for decoder tokens. self.token_pos_encoder = PositionalEncoding( hidden_dim=self.hidden_dim, dropout_rate=self.dropout_rate ) # Head self.head = nn.Linear( in_features=self.hidden_dim, out_features=self.num_classes ) # Initalize weights for encoder. self.init_weights() def init_weights(self) -> None: """Initalize weights for decoder network and head.""" bound = 0.1 self.token_embedding.weight.data.uniform_(-bound, bound) self.head.bias.data.zero_() self.head.weight.data.uniform_(-bound, bound) # TODO: Initalize encoder? def encode(self, x: Tensor) -> Tensor: """Encodes an image into a latent feature vector. Args: x (Tensor): Image tensor. Shape: - x: :math: `(B, C, H, W)` - z: :math: `(B, Sx, E)` where Sx is the length of the flattened feature maps projected from the encoder. E latent dimension for each pixel in the projected feature maps. Returns: Tensor: A Latent embedding of the image. """ z = self.encoder(x) z = self.latent_encoder(z) # Permute tensor from [B, E, Ho * Wo] to [B, Sx, E] z = z.permute(0, 2, 1) return z def decode(self, z: Tensor, context: Tensor) -> Tensor: """Decodes latent images embedding into word pieces. Args: z (Tensor): Latent images embedding. context (Tensor): Word embeddings. Shapes: - z: :math: `(B, Sx, E)` - context: :math: `(B, Sy)` - out: :math: `(B, Sy, T)` where Sy is the length of the output and T is the number of tokens. Returns: Tensor: Sequence of word piece embeddings. """ context = context.long() context_mask = context != self.pad_index context = self.token_embedding(context) * math.sqrt(self.hidden_dim) context = self.token_pos_encoder(context) out = self.decoder(x=context, context=z, mask=context_mask) logits = self.head(out) # [B, Sy, T] logits = logits.permute(0, 2, 1) # [B, T, Sy] return logits def forward(self, x: Tensor, context: Tensor) -> Tensor: """Encodes images into word piece logtis. Args: x (Tensor): Input image(s). context (Tensor): Target word embeddings. Shapes: - x: :math: `(B, C, H, W)` - context: :math: `(B, Sy, T)` where B is the batch size, C is the number of input channels, H is the image height and W is the image width. Returns: Tensor: Sequence of logits. """ z = self.encode(x) logits = self.decode(z, context) return logits