"""Efficient net.""" from torch import nn, Tensor from .mbconv import MBConvBlock from .utils import ( block_args, round_filters, round_repeats, ) class EfficientNet(nn.Module): # TODO: attr archs = { # width,depth0res,dropout "b0": (1.0, 1.0, 0.2), "b1": (1.0, 1.1, 0.2), "b2": (1.1, 1.2, 0.3), "b3": (1.2, 1.4, 0.3), "b4": (1.4, 1.8, 0.4), "b5": (1.6, 2.2, 0.4), "b6": (1.8, 2.6, 0.5), "b7": (2.0, 3.1, 0.5), "b8": (2.2, 3.6, 0.5), "l2": (4.3, 5.3, 0.5), } def __init__( self, arch: str, out_channels: int = 1280, stochastic_dropout_rate: float = 0.2, bn_momentum: float = 0.99, bn_eps: float = 1.0e-3, ) -> None: super().__init__() assert arch in self.archs, f"{arch} not a valid efficient net architecure!" self.arch = self.archs[arch] self.out_channels = out_channels self.stochastic_dropout_rate = stochastic_dropout_rate self.bn_momentum = bn_momentum self.bn_eps = bn_eps self._conv_stem: nn.Sequential = None self._blocks: nn.ModuleList = None self._conv_head: nn.Sequential = None self._build() def _build(self) -> None: _block_args = block_args() in_channels = 1 # BW out_channels = round_filters(32, self.arch) self._conv_stem = nn.Sequential( nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=(2, 2), bias=False, ), nn.BatchNorm2d( num_features=out_channels, momentum=self.bn_momentum, eps=self.bn_eps ), nn.Mish(inplace=True), ) self._blocks = nn.ModuleList([]) for args in _block_args: args.in_channels = round_filters(args.in_channels, self.arch) args.out_channels = round_filters(args.out_channels, self.arch) args.num_repeats = round_repeats(args.num_repeats, self.arch) for _ in range(args.num_repeats): self._blocks.append( MBConvBlock( **args, bn_momentum=self.bn_momentum, bn_eps=self.bn_eps, ) ) args.in_channels = args.out_channels args.stride = 1 in_channels = round_filters(320, self.arch) out_channels = round_filters(self.out_channels, self.arch) self._conv_head = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d( num_features=out_channels, momentum=self.bn_momentum, eps=self.bn_eps ), ) def extract_features(self, x: Tensor) -> Tensor: x = self._conv_stem(x) for i, block in enumerate(self._blocks): stochastic_dropout_rate = self.stochastic_dropout_rate if self.stochastic_dropout_rate: stochastic_dropout_rate *= i / len(self._blocks) x = block(x, stochastic_dropout_rate=stochastic_dropout_rate) x = self._conv_head(x) return x def forward(self, x: Tensor) -> Tensor: return self.extract_features(x)