"""Mobile inverted residual block.""" from typing import Optional, Sequence, Union, Tuple import attr import torch from torch import nn, Tensor import torch.nn.functional as F from text_recognizer.networks.encoders.efficientnet.utils import stochastic_depth def _convert_stride(stride: Union[Tuple[int, int], int]) -> Tuple[int, int]: """Converts int to tuple.""" return (stride,) * 2 if isinstance(stride, int) else stride @attr.s(eq=False) class MBConvBlock(nn.Module): """Mobile Inverted Residual Bottleneck block.""" def __attrs_pre_init__(self) -> None: super().__init__() in_channels: int = attr.ib() out_channels: int = attr.ib() kernel_size: Tuple[int, int] = attr.ib() stride: Tuple[int, int] = attr.ib(converter=_convert_stride) bn_momentum: float = attr.ib() bn_eps: float = attr.ib() se_ratio: float = attr.ib() expand_ratio: int = attr.ib() pad: Tuple[int, int, int, int] = attr.ib(init=False) _inverted_bottleneck: nn.Sequential = attr.ib(init=False) _depthwise: nn.Sequential = attr.ib(init=False) _squeeze_excite: nn.Sequential = attr.ib(init=False) _pointwise: nn.Sequential = attr.ib(init=False) @pad.default def _configure_padding(self) -> Tuple[int, int, int, int]: """Set padding for convolutional layers.""" if self.stride == (2, 2): return ((self.kernel_size - 1) // 2 - 1, (self.kernel_size - 1) // 2,) * 2 return ((self.kernel_size - 1) // 2,) * 4 def __attrs_post_init__(self) -> None: """Post init configuration.""" self._build() def _build(self) -> None: has_se = self.se_ratio is not None and 0.0 < self.se_ratio < 1.0 inner_channels = self.in_channels * self.expand_ratio self._inverted_bottleneck = ( self._configure_inverted_bottleneck(out_channels=inner_channels) if self.expand_ratio != 1 else None ) self._depthwise = self._configure_depthwise( in_channels=inner_channels, out_channels=inner_channels, groups=inner_channels, ) self._squeeze_excite = ( self._configure_squeeze_excite( in_channels=inner_channels, out_channels=inner_channels, ) if has_se else None ) self._pointwise = self._configure_pointwise(in_channels=inner_channels) def _configure_inverted_bottleneck(self, out_channels: int) -> nn.Sequential: """Expansion phase.""" return nn.Sequential( nn.Conv2d( in_channels=self.in_channels, out_channels=out_channels, kernel_size=1, bias=False, ), nn.BatchNorm2d( num_features=out_channels, momentum=self.bn_momentum, eps=self.bn_eps ), nn.Mish(inplace=True), ) def _configure_depthwise( self, in_channels: int, out_channels: int, groups: int, ) -> nn.Sequential: return nn.Sequential( nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=self.kernel_size, stride=self.stride, groups=groups, bias=False, ), nn.BatchNorm2d( num_features=out_channels, momentum=self.bn_momentum, eps=self.bn_eps ), nn.Mish(inplace=True), ) def _configure_squeeze_excite( self, in_channels: int, out_channels: int ) -> nn.Sequential: num_squeezed_channels = max(1, int(in_channels * self.se_ratio)) return nn.Sequential( nn.Conv2d( in_channels=in_channels, out_channels=num_squeezed_channels, kernel_size=1, ), nn.Mish(inplace=True), nn.Conv2d( in_channels=num_squeezed_channels, out_channels=out_channels, kernel_size=1, ), ) def _configure_pointwise(self, in_channels: int) -> nn.Sequential: return nn.Sequential( nn.Conv2d( in_channels=in_channels, out_channels=self.out_channels, kernel_size=1, bias=False, ), nn.BatchNorm2d( num_features=self.out_channels, momentum=self.bn_momentum, eps=self.bn_eps, ), ) def _stochastic_depth( self, x: Tensor, residual: Tensor, stochastic_dropout_rate: Optional[float] ) -> Tensor: if self.stride == (1, 1) and self.in_channels == self.out_channels: if stochastic_dropout_rate: x = stochastic_depth( x, p=stochastic_dropout_rate, training=self.training ) x += residual return x def forward( self, x: Tensor, stochastic_dropout_rate: Optional[float] = None ) -> Tensor: residual = x if self._inverted_bottleneck is not None: x = self._inverted_bottleneck(x) x = F.pad(x, self.pad) x = self._depthwise(x) if self._squeeze_excite is not None: x_squeezed = F.adaptive_avg_pool2d(x, 1) x_squeezed = self._squeeze_excite(x) x = torch.tanh(F.softplus(x_squeezed)) * x x = self._pointwise(x) # Stochastic depth x = self._stochastic_depth(x, residual, stochastic_dropout_rate) return x