"""A Transformer with a cnn backbone. The network encodes a image with a convolutional backbone to a latent representation, i.e. feature maps. A 2d positional encoding is applied to the feature maps for spatial information. The resulting feature are then set to a transformer decoder together with the target tokens. TODO: Local attention for transformer.j """ import importlib import math from typing import Dict, List, Union, Sequence, Tuple, Type from einops import rearrange from omegaconf import OmegaConf import torch from torch import nn from torch import Tensor import torchvision from text_recognizer.data.emnist import emnist_mapping from text_recognizer.networks.transformer import ( Decoder, DecoderLayer, PositionalEncoding, PositionalEncoding2D, target_padding_mask, ) class ImageTransformer(nn.Module): def __init__( self, input_shape: Sequence[int], output_shape: Sequence[int], encoder: Union[OmegaConf, Dict], mapping: str, num_decoder_layers: int = 4, hidden_dim: int = 256, num_heads: int = 4, expansion_dim: int = 4, dropout_rate: float = 0.1, transformer_activation: str = "glu", ) -> None: # Configure mapping mapping, inverse_mapping = self._configure_mapping(mapping) self.vocab_size = len(mapping) self.hidden_dim = hidden_dim self.max_output_length = output_shape[0] self.start_index = inverse_mapping[""] self.end_index = inverse_mapping[""] self.pad_index = inverse_mapping["

"] # Image backbone self.encoder = self._configure_encoder(encoder) self.feature_map_encoding = PositionalEncoding2D( hidden_dim=hidden_dim, max_h=input_shape[1], max_w=input_shape[2] ) # Target token embedding self.trg_embedding = nn.Embedding(self.vocab_size, hidden_dim) self.trg_position_encoding = PositionalEncoding(hidden_dim, dropout_rate) # Transformer decoder self.decoder = Decoder( decoder_layer=DecoderLayer( hidden_dim=hidden_dim, num_heads=num_heads, expansion_dim=expansion_dim, dropout_rate=dropout_rate, activation=transformer_activation, ), num_layers=num_decoder_layers, norm=nn.LayerNorm(hidden_dim), ) # Classification head self.head = nn.Linear(hidden_dim, self.vocab_size) # Initialize weights self._init_weights() def _init_weights(self) -> None: """Initialize network weights.""" self.trg_embedding.weight.data.uniform_(-0.1, 0.1) self.head.bias.data.zero_() self.head.weight.data.uniform_(-0.1, 0.1) nn.init.kaiming_normal_( self.feature_map_encoding.weight.data, a=0, mode="fan_out", nonlinearity="relu", ) if self.feature_map_encoding.bias is not None: _, fan_out = nn.init._calculate_fan_in_and_fan_out( self.feature_map_encoding.weight.data ) bound = 1 / math.sqrt(fan_out) nn.init.normal_(self.feature_map_encoding.bias, -bound, bound) @staticmethod def _configure_encoder(encoder: Union[OmegaConf, NamedTuple]) -> Type[nn.Module]: encoder = OmegaConf.create(encoder) network_module = importlib.import_module("text_recognizer.networks") encoder_class = getattr(network_module, encoder.type) return encoder_class(**encoder.args) def _configure_mapping(self, mapping: str) -> Tuple[List[str], Dict[str, int]]: """Configures mapping.""" if mapping == "emnist": mapping, inverse_mapping, _ = emnist_mapping() return mapping, inverse_mapping def encode(self, image: Tensor) -> Tensor: """Extracts image features with backbone. Args: image (Tensor): Image(s) of handwritten text. Retuns: Tensor: Image features. Shapes: - image: :math: `(B, C, H, W)` - latent: :math: `(B, T, C)` """ # Extract image features. image_features = self.encoder(image) # Add 2d encoding to the feature maps. image_features = self.feature_map_encoding(image_features) # Collapse features maps height and width. image_features = rearrange(image_features, "b c h w -> b (h w) c") return image_features def decode(self, memory: Tensor, trg: Tensor) -> Tensor: """Decodes image features with transformer decoder.""" trg_mask = target_padding_mask(trg=trg, pad_index=self.pad_index) trg = self.trg_embedding(trg) * math.sqrt(self.hidden_dim) trg = self.trg_position_encoding(trg) out = self.decoder(trg=trg, memory=memory, trg_mask=trg_mask, memory_mask=None) logits = self.head(out) return logits def predict(self, image: Tensor) -> Tensor: """Transcribes text in image(s).""" bsz = image.shape[0] image_features = self.encode(image) output_tokens = ( (torch.ones((bsz, self.max_output_length)) * self.pad_index) .type_as(image) .long() ) output_tokens[:, 0] = self.start_index for i in range(1, self.max_output_length): trg = output_tokens[:, :i] output = self.decode(image_features, trg) output = torch.argmax(output, dim=-1) output_tokens[:, i] = output[-1:] # Set all tokens after end token to be padding. for i in range(1, self.max_output_length): indices = output_tokens[:, i - 1] == self.end_index | ( output_tokens[:, i - 1] == self.pad_index ) output_tokens[indices, i] = self.pad_index return output_tokens