"""Local attention module. Also stolen from lucidrains from here: https://github.com/lucidrains/local-attention/blob/master/local_attention/local_attention.py """ from functools import reduce from operator import mul from typing import Optional, Tuple import attr from einops import rearrange import torch from torch import einsum from torch import nn from torch import Tensor import torch.nn.functional as F from text_recognizer.networks.transformer.attention import apply_rotary_emb @attr.s(eq=False) class LocalAttention(nn.Module): dim: int = attr.ib() dim_head: int = attr.ib(default=64) window_size: int = attr.ib(default=128) look_back: int = attr.ib(default=1) dropout_rate: float = attr.ib(default=0.0) def __attrs_pre_init__(self) -> None: super().__init__() def __attrs_post_init__(self) -> None: """Post init configuration.""" self.scale = self.dim ** -0.5 inner_dim = self.dim * self.dim_head self.query = nn.Linear(self.dim, inner_dim, bias=False) self.key = nn.Linear(self.dim, inner_dim, bias=False) self.value = nn.Linear(self.dim, inner_dim, bias=False) self.dropout = nn.Dropout(p=self.dropout_rate) # Feedforward self.fc = nn.Linear(inner_dim, self.dim) def forward( self, x: Tensor, mask: Optional[Tensor] = None, rotary_pos_emb: Optional[Tensor] = None, ) -> Tuple[Tensor, Tensor]: b, n, _, device, dtype = *x.shape, x.device, x.dtype assert ( n % self.window_size ), f"Sequence length {n} must be divisable with window size {self.window_size}" q = self.query(x) k = self.key(x) v = self.value(x) q, k, v = map( lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.num_heads), (q, k, v) ) q, k, v = ( apply_rotary_emb(q, k, v, rotary_pos_emb) if rotary_pos_emb is not None else (q, k, v,) ) num_windows = n // self.window_size # Compute buckets b_n = torch.arange(n).type_as(q).reshape(1, num_windows, self.window_size) bq, bk, bv = map( lambda t: t.reshape(b, num_windows, self.window_size, -1), (q, k, v) ) bk = look_around(bk, backward=self.backward) bv = look_around(bv, backward=self.backward) bq_k = look_around(b_n, backward=self.backward) # Compute the attention. energy = einsum("b h i d, b h j d -> b h i j", bq, bk) * self.scale mask_value = -torch.finfo(energy.dtype).max # Causal mask. causal_mask = b_n[:, :, :, None] < bq_k[:, :, None, :] energy = energy.masked_fill_(causal_mask, mask_value) del causal_mask bucket_mask = bq_k[:, :, None, :] == -1 energy.masked_fill_(bucket_mask, mask_value) del bucket_mask energy = apply_input_mask( b, energy=energy, mask=mask, backward=self.backward, window_size=self.window_size, num_windows=num_windows, mask_value=mask_value, ) attn = F.softmax(energy, dim=-1) attn = self.dropout(attn) out = einsum("b h i j, b h j d -> b h i d", attn, bv) out = rearrange(out, "b h n d -> b n (h d)") out = self.fc(out) return out, attn def merge_dims(ind_from, ind_to, tensor): shape = list(tensor.shape) arr_slice = slice(ind_from, ind_to + 1) shape[arr_slice] = [reduce(mul, shape[arr_slice])] return tensor.reshape(*shape) def expand_dim(t, dim, k, unsqueeze=True): if unsqueeze: t = t.unsqueeze(dim) expand_shape = [-1] * len(t.shape) expand_shape[dim] = k return t.expand(*expand_shape) def look_around(x: Tensor, backward: int, pad_value: int = -1, dim: int = 2) -> Tensor: n = x.shape[1] dims = (len(x.shape) - dim) * (0, 0) x_pad = F.pad(x, (*dims, backward, 0), value=pad_value) tensors = [x_pad[:, ind : (ind + n), ...] for ind in range(backward + 1)] return torch.cat(tensors, dim=dim) def apply_input_mask( b: int, energy: Tensor, mask: Tensor, backward: int, window_size: int, num_windows: int, mask_value: Tensor, ) -> Tensor: h = b // mask.shape[0] mask = mask.reshape(-1, window_size, num_windows) mq = mk = mask mk = look_around(mk, pad_value=False, backward=backward) mask = mq[:, :, :, None] * mk[:, :, None, :] mask = merge_dims(0, 1, expand_dim(mask, 1, h)) energy.masked_fill_(~mask, mask_value) del mask return energy