1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
|
{
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"id": "6ce2519f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The autoreload extension is already loaded. To reload it, use:\n",
" %reload_ext autoreload\n"
]
}
],
"source": [
"import os\n",
"os.environ['CUDA_VISIBLE_DEVICE'] = ''\n",
"import random\n",
"\n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import numpy as np\n",
"\n",
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
"from importlib.util import find_spec\n",
"if find_spec(\"text_recognizer\") is None:\n",
" import sys\n",
" sys.path.append('..')\n",
"\n",
"from text_recognizer.data.iam_paragraphs import IAMParagraphs\n",
"from text_recognizer.data.iam_synthetic_paragraphs import IAMSyntheticParagraphs\n",
"from text_recognizer.data.iam_extended_paragraphs import IAMExtendedParagraphs"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "726ac25b",
"metadata": {},
"outputs": [],
"source": [
"def _plot(image, figsize=(12,12), title='', vmin=0, vmax=255):\n",
" plt.figure(figsize=figsize)\n",
" if title:\n",
" plt.title(title)\n",
" plt.imshow(image, cmap='gray', vmin=vmin, vmax=vmax)\n",
"\n",
"def convert_y_label_to_string(y, mapping, padding_index=3):\n",
" return ''.join([mapping[int(i)] for i in y if i != padding_index])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ec16e41f-3d12-4da2-bf02-7429b41cf98e",
"metadata": {},
"outputs": [],
"source": [
"from hydra import compose, initialize\n",
"from omegaconf import OmegaConf\n",
"from hydra.utils import instantiate"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e9386367-2b49-4633-9936-57081132e59e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"callbacks:\n",
" model_checkpoint:\n",
" _target_: pytorch_lightning.callbacks.ModelCheckpoint\n",
" monitor: val/loss\n",
" save_top_k: 1\n",
" save_last: true\n",
" mode: min\n",
" verbose: false\n",
" dirpath: checkpoints/\n",
" filename: '{epoch:02d}'\n",
" learning_rate_monitor:\n",
" _target_: pytorch_lightning.callbacks.LearningRateMonitor\n",
" logging_interval: step\n",
" log_momentum: false\n",
" watch_model:\n",
" _target_: callbacks.wandb_callbacks.WatchModel\n",
" log: all\n",
" log_freq: 100\n",
" upload_code_as_artifact:\n",
" _target_: callbacks.wandb_callbacks.UploadCodeAsArtifact\n",
" project_dir: ${work_dir}/../text_recognizer\n",
" upload_ckpts_as_artifact:\n",
" _target_: callbacks.wandb_callbacks.UploadCheckpointsAsArtifact\n",
" ckpt_dir: checkpoints/\n",
" upload_best_only: true\n",
" log_image_reconstruction:\n",
" _target_: callbacks.wandb_callbacks.LogReconstuctedImages\n",
" num_samples: 8\n",
"criterion:\n",
" _target_: torch.nn.MSELoss\n",
" reduction: mean\n",
"datamodule:\n",
" _target_: text_recognizer.data.iam_extended_paragraphs.IAMExtendedParagraphs\n",
" batch_size: 16\n",
" num_workers: 12\n",
" train_fraction: 0.8\n",
" augment: true\n",
" pin_memory: false\n",
" word_pieces: true\n",
"logger:\n",
" wandb:\n",
" _target_: pytorch_lightning.loggers.wandb.WandbLogger\n",
" project: text-recognizer\n",
" name: null\n",
" save_dir: .\n",
" offline: false\n",
" id: null\n",
" log_model: false\n",
" prefix: ''\n",
" job_type: train\n",
" group: ''\n",
" tags: []\n",
"lr_scheduler:\n",
" _target_: torch.optim.lr_scheduler.OneCycleLR\n",
" max_lr: 0.001\n",
" total_steps: null\n",
" epochs: 64\n",
" steps_per_epoch: 830\n",
" pct_start: 0.3\n",
" anneal_strategy: cos\n",
" cycle_momentum: true\n",
" base_momentum: 0.85\n",
" max_momentum: 0.95\n",
" div_factor: 25.0\n",
" final_div_factor: 10000.0\n",
" three_phase: true\n",
" last_epoch: -1\n",
" verbose: false\n",
"mapping:\n",
" _target_: text_recognizer.data.word_piece_mapping.WordPieceMapping\n",
" num_features: 1000\n",
" tokens: iamdb_1kwp_tokens_1000.txt\n",
" lexicon: iamdb_1kwp_lex_1000.txt\n",
" data_dir: null\n",
" use_words: false\n",
" prepend_wordsep: false\n",
" special_tokens:\n",
" - <s>\n",
" - <e>\n",
" - <p>\n",
" extra_symbols:\n",
" - '\n",
"\n",
" '\n",
"model:\n",
" _target_: text_recognizer.models.vqvae.VQVAELitModel\n",
" interval: step\n",
" monitor: val/loss\n",
" latent_loss_weight: 1.0\n",
"network:\n",
" encoder:\n",
" _target_: text_recognizer.networks.vqvae.encoder.Encoder\n",
" in_channels: 1\n",
" hidden_dim: 32\n",
" channels_multipliers:\n",
" - 1\n",
" - 2\n",
" - 6\n",
" - 8\n",
" dropout_rate: 0.25\n",
" decoder:\n",
" _target_: text_recognizer.networks.vqvae.decoder.Decoder\n",
" out_channels: 1\n",
" hidden_dim: 32\n",
" channels_multipliers:\n",
" - 8\n",
" - 6\n",
" - 2\n",
" - 1\n",
" dropout_rate: 0.25\n",
" _target_: text_recognizer.networks.vqvae.vqvae.VQVAE\n",
" hidden_dim: 256\n",
" embedding_dim: 32\n",
" num_embeddings: 1024\n",
" decay: 0.99\n",
"optimizer:\n",
" _target_: madgrad.MADGRAD\n",
" lr: 0.001\n",
" momentum: 0.9\n",
" weight_decay: 0\n",
" eps: 1.0e-06\n",
"trainer:\n",
" _target_: pytorch_lightning.Trainer\n",
" stochastic_weight_avg: false\n",
" auto_scale_batch_size: binsearch\n",
" auto_lr_find: false\n",
" gradient_clip_val: 0\n",
" fast_dev_run: false\n",
" gpus: 1\n",
" precision: 16\n",
" max_epochs: 64\n",
" terminate_on_nan: true\n",
" weights_summary: top\n",
" limit_train_batches: 1.0\n",
" limit_val_batches: 1.0\n",
" limit_test_batches: 1.0\n",
" resume_from_checkpoint: null\n",
"seed: 4711\n",
"tune: false\n",
"train: true\n",
"test: true\n",
"logging: INFO\n",
"work_dir: ${hydra:runtime.cwd}\n",
"debug: false\n",
"print_config: true\n",
"ignore_warnings: true\n",
"summary:\n",
"- 1\n",
"- 576\n",
"- 640\n",
"\n",
"{'callbacks': {'model_checkpoint': {'_target_': 'pytorch_lightning.callbacks.ModelCheckpoint', 'monitor': 'val/loss', 'save_top_k': 1, 'save_last': True, 'mode': 'min', 'verbose': False, 'dirpath': 'checkpoints/', 'filename': '{epoch:02d}'}, 'learning_rate_monitor': {'_target_': 'pytorch_lightning.callbacks.LearningRateMonitor', 'logging_interval': 'step', 'log_momentum': False}, 'watch_model': {'_target_': 'callbacks.wandb_callbacks.WatchModel', 'log': 'all', 'log_freq': 100}, 'upload_code_as_artifact': {'_target_': 'callbacks.wandb_callbacks.UploadCodeAsArtifact', 'project_dir': '${work_dir}/../text_recognizer'}, 'upload_ckpts_as_artifact': {'_target_': 'callbacks.wandb_callbacks.UploadCheckpointsAsArtifact', 'ckpt_dir': 'checkpoints/', 'upload_best_only': True}, 'log_image_reconstruction': {'_target_': 'callbacks.wandb_callbacks.LogReconstuctedImages', 'num_samples': 8}}, 'criterion': {'_target_': 'torch.nn.MSELoss', 'reduction': 'mean'}, 'datamodule': {'_target_': 'text_recognizer.data.iam_extended_paragraphs.IAMExtendedParagraphs', 'batch_size': 16, 'num_workers': 12, 'train_fraction': 0.8, 'augment': True, 'pin_memory': False, 'word_pieces': True}, 'logger': {'wandb': {'_target_': 'pytorch_lightning.loggers.wandb.WandbLogger', 'project': 'text-recognizer', 'name': None, 'save_dir': '.', 'offline': False, 'id': None, 'log_model': False, 'prefix': '', 'job_type': 'train', 'group': '', 'tags': []}}, 'lr_scheduler': {'_target_': 'torch.optim.lr_scheduler.OneCycleLR', 'max_lr': 0.001, 'total_steps': None, 'epochs': 64, 'steps_per_epoch': 830, 'pct_start': 0.3, 'anneal_strategy': 'cos', 'cycle_momentum': True, 'base_momentum': 0.85, 'max_momentum': 0.95, 'div_factor': 25.0, 'final_div_factor': 10000.0, 'three_phase': True, 'last_epoch': -1, 'verbose': False}, 'mapping': {'_target_': 'text_recognizer.data.word_piece_mapping.WordPieceMapping', 'num_features': 1000, 'tokens': 'iamdb_1kwp_tokens_1000.txt', 'lexicon': 'iamdb_1kwp_lex_1000.txt', 'data_dir': None, 'use_words': False, 'prepend_wordsep': False, 'special_tokens': ['<s>', '<e>', '<p>'], 'extra_symbols': ['\\n']}, 'model': {'_target_': 'text_recognizer.models.vqvae.VQVAELitModel', 'interval': 'step', 'monitor': 'val/loss', 'latent_loss_weight': 1.0}, 'network': {'encoder': {'_target_': 'text_recognizer.networks.vqvae.encoder.Encoder', 'in_channels': 1, 'hidden_dim': 32, 'channels_multipliers': [1, 2, 6, 8], 'dropout_rate': 0.25}, 'decoder': {'_target_': 'text_recognizer.networks.vqvae.decoder.Decoder', 'out_channels': 1, 'hidden_dim': 32, 'channels_multipliers': [8, 6, 2, 1], 'dropout_rate': 0.25}, '_target_': 'text_recognizer.networks.vqvae.vqvae.VQVAE', 'hidden_dim': 256, 'embedding_dim': 32, 'num_embeddings': 1024, 'decay': 0.99}, 'optimizer': {'_target_': 'madgrad.MADGRAD', 'lr': 0.001, 'momentum': 0.9, 'weight_decay': 0, 'eps': 1e-06}, 'trainer': {'_target_': 'pytorch_lightning.Trainer', 'stochastic_weight_avg': False, 'auto_scale_batch_size': 'binsearch', 'auto_lr_find': False, 'gradient_clip_val': 0, 'fast_dev_run': False, 'gpus': 1, 'precision': 16, 'max_epochs': 64, 'terminate_on_nan': True, 'weights_summary': 'top', 'limit_train_batches': 1.0, 'limit_val_batches': 1.0, 'limit_test_batches': 1.0, 'resume_from_checkpoint': None}, 'seed': 4711, 'tune': False, 'train': True, 'test': True, 'logging': 'INFO', 'work_dir': '${hydra:runtime.cwd}', 'debug': False, 'print_config': True, 'ignore_warnings': True, 'summary': [1, 576, 640]}\n"
]
}
],
"source": [
"# context initialization\n",
"with initialize(config_path=\"../training/conf/\", job_name=\"test_app\"):\n",
" cfg = compose(config_name=\"config\", overrides=[\"+experiment=vqvae\"])\n",
" print(OmegaConf.to_yaml(cfg))\n",
" print(cfg)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "1c4624d1-6de5-41ab-9208-0988fcdba76d",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2021-08-06 01:28:48.099 | DEBUG | text_recognizer.data.word_piece_mapping:__init__:37 - Using data dir: /home/aktersnurra/projects/text-recognizer/data/downloaded/iam/iamdb\n",
"2021-08-06 01:28:48.299 | INFO | text_recognizer.data.iam_paragraphs:setup:97 - Loading IAM paragraph regions and lines for None...\n",
"2021-08-06 01:29:08.361 | DEBUG | text_recognizer.data.word_piece_mapping:__init__:37 - Using data dir: /home/aktersnurra/projects/text-recognizer/data/downloaded/iam/iamdb\n",
"2021-08-06 01:29:11.692 | DEBUG | text_recognizer.data.word_piece_mapping:__init__:37 - Using data dir: /home/aktersnurra/projects/text-recognizer/data/downloaded/iam/iamdb\n",
"2021-08-06 01:29:11.797 | INFO | text_recognizer.data.iam_synthetic_paragraphs:setup:68 - IAM Synthetic dataset steup for stage None...\n",
"2021-08-06 01:29:24.065 | DEBUG | text_recognizer.data.word_piece_mapping:__init__:37 - Using data dir: /home/aktersnurra/projects/text-recognizer/data/downloaded/iam/iamdb\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"IAM Original and Synthetic Paragraphs Dataset\n",
"Num classes: 1006\n",
"Dims: (1, 576, 640)\n",
"Output dims: (682, 1)\n",
"Train/val/test sizes: 19911, 262, 231\n",
"Train Batch x stats: (torch.Size([16, 1, 576, 640]), torch.float32, tensor(0.), tensor(0.0165), tensor(0.0767), tensor(1.))\n",
"Train Batch y stats: (torch.Size([16, 451]), torch.int64, tensor(1), tensor(1003))\n",
"Test Batch x stats: (torch.Size([16, 1, 576, 640]), torch.float32, tensor(0.), tensor(0.0312), tensor(0.0817), tensor(0.9294))\n",
"Test Batch y stats: (torch.Size([16, 451]), torch.int64, tensor(1), tensor(1003))\n",
"\n"
]
}
],
"source": [
"datamodule = instantiate(cfg.datamodule, mapping=cfg.mapping)\n",
"datamodule.prepare_data()\n",
"datamodule.setup()\n",
"print(datamodule)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "770f29f6-94f3-40c7-80f0-d85bd2d23fef",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1245"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(datamodule.train_dataloader())"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "e6e8c05b",
"metadata": {},
"outputs": [],
"source": [
"x, y = next(iter(datamodule.train_dataloader()))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8bed2170",
"metadata": {},
"outputs": [],
"source": [
"x.shape"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "0cf22683",
"metadata": {},
"outputs": [],
"source": [
"x, y = datamodule.data_train[-3]"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "074b269f-caff-4ec6-acdc-3f73721d5a05",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([1002, 3, 573, 10, 338, 119, 531, 18, 1, 2, 24, 36,\n",
" 64, 7, 17, 33, 1, 37, 15, 47, 7, 54, 7, 71,\n",
" 24, 54, 7, 1, 2, 743, 1, 511, 13, 7, 1, 742,\n",
" 1000, 1, 2, 370, 3, 125, 112, 12, 11, 3, 91, 86,\n",
" 20, 1, 26, 20, 36, 20, 31, 7, 4, 100, 508, 48,\n",
" 1000, 116, 29, 67, 1, 7, 20, 2, 15, 7, 54, 36,\n",
" 13, 1, 17, 54, 23, 71, 15, 1, 653, 1000, 953, 8,\n",
" 1, 36, 24, 64, 7, 37, 33, 1000, 91, 35, 3, 507,\n",
" 369, 12, 316, 1, 47, 20, 21, 17, 33, 1000, 1, 469,\n",
" 324, 33, 1, 54, 7, 46, 54, 7, 2, 2, 23, 24,\n",
" 21, 1, 7, 2, 15, 23, 16, 20, 15, 7, 2, 10,\n",
" 3, 263, 26, 182, 23, 480, 42, 1000, 3, 260, 40, 100,\n",
" 127, 149, 6, 1, 71, 23, 46, 16, 7, 21, 15, 10,\n",
" 1000, 6, 522, 1, 852, 2, 1, 465, 88, 16, 6, 460,\n",
" 423, 1, 64, 23, 36, 36, 20, 46, 7, 4, 1001, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003])"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "8541e6ee",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([1, 576, 640])"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x.shape"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "4bf9178f-5f36-4083-964c-28c0d1e1be4f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'<b>': 0,\n",
" '<s>': 1,\n",
" '<e>': 2,\n",
" '<p>': 3,\n",
" '0': 4,\n",
" '1': 5,\n",
" '2': 6,\n",
" '3': 7,\n",
" '4': 8,\n",
" '5': 9,\n",
" '6': 10,\n",
" '7': 11,\n",
" '8': 12,\n",
" '9': 13,\n",
" 'A': 14,\n",
" 'B': 15,\n",
" 'C': 16,\n",
" 'D': 17,\n",
" 'E': 18,\n",
" 'F': 19,\n",
" 'G': 20,\n",
" 'H': 21,\n",
" 'I': 22,\n",
" 'J': 23,\n",
" 'K': 24,\n",
" 'L': 25,\n",
" 'M': 26,\n",
" 'N': 27,\n",
" 'O': 28,\n",
" 'P': 29,\n",
" 'Q': 30,\n",
" 'R': 31,\n",
" 'S': 32,\n",
" 'T': 33,\n",
" 'U': 34,\n",
" 'V': 35,\n",
" 'W': 36,\n",
" 'X': 37,\n",
" 'Y': 38,\n",
" 'Z': 39,\n",
" 'a': 14,\n",
" 'b': 15,\n",
" 'c': 16,\n",
" 'd': 17,\n",
" 'e': 18,\n",
" 'f': 19,\n",
" 'g': 20,\n",
" 'h': 21,\n",
" 'i': 22,\n",
" 'j': 23,\n",
" 'k': 24,\n",
" 'l': 25,\n",
" 'm': 26,\n",
" 'n': 27,\n",
" 'o': 28,\n",
" 'p': 29,\n",
" 'q': 30,\n",
" 'r': 31,\n",
" 's': 32,\n",
" 't': 33,\n",
" 'u': 34,\n",
" 'v': 35,\n",
" 'w': 36,\n",
" 'x': 37,\n",
" 'y': 38,\n",
" 'z': 39,\n",
" ' ': 40,\n",
" '!': 41,\n",
" '\"': 42,\n",
" '#': 43,\n",
" '&': 44,\n",
" \"'\": 45,\n",
" '(': 46,\n",
" ')': 47,\n",
" '*': 48,\n",
" '+': 49,\n",
" ',': 50,\n",
" '-': 51,\n",
" '.': 52,\n",
" '/': 53,\n",
" ':': 54,\n",
" ';': 55,\n",
" '?': 56,\n",
" '\\n': 57}"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"datamodule.mapping.inverse_mapping"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "ec962504-808d-4819-9853-51711c0175f3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"58"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(datamodule.mapping.mapping)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "b0c4625b-b864-4c9d-b865-d9cc29f87298",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([1002, 3, 573, 10, 338, 119, 531, 18, 1, 2, 24, 36,\n",
" 64, 7, 17, 33, 1, 37, 15, 47, 7, 54, 7, 71,\n",
" 24, 54, 7, 1, 2, 743, 1, 511, 13, 7, 1, 742,\n",
" 1000, 1, 2, 370, 3, 125, 112, 12, 11, 3, 91, 86,\n",
" 20, 1, 26, 20, 36, 20, 31, 7, 4, 100, 508, 48,\n",
" 1000, 116, 29, 67, 1, 7, 20, 2, 15, 7, 54, 36,\n",
" 13, 1, 17, 54, 23, 71, 15, 1, 653, 1000, 953, 8,\n",
" 1, 36, 24, 64, 7, 37, 33, 1000, 91, 35, 3, 507,\n",
" 369, 12, 316, 1, 47, 20, 21, 17, 33, 1000, 1, 469,\n",
" 324, 33, 1, 54, 7, 46, 54, 7, 2, 2, 23, 24,\n",
" 21, 1, 7, 2, 15, 23, 16, 20, 15, 7, 2, 10,\n",
" 3, 263, 26, 182, 23, 480, 42, 1000, 3, 260, 40, 100,\n",
" 127, 149, 6, 1, 71, 23, 46, 16, 7, 21, 15, 10,\n",
" 1000, 6, 522, 1, 852, 2, 1, 465, 88, 16, 6, 460,\n",
" 423, 1, 64, 23, 36, 36, 20, 46, 7, 4, 1001, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003, 1003,\n",
" 1003, 1003, 1003, 1003, 1003, 1003, 1003])"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "bcfc61cc-e6cc-4fb0-91ca-eca02168c6e1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([1004])"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"datamodule.mapping.get_index(\"#\")"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "1e657891-45bb-479e-95ba-bdefe3a84ae9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'<s>▁problem▁of▁life▁cannot▁be▁solved.▁\"therefore▁shall▁1ye▁lay\\n▁since▁meeting▁in▁doria▁palace,▁no▁word▁had\\n▁there▁is▁an▁easterly▁drift▁special\\n▁someone▁to▁love\".\\n▁do▁for▁world▁using▁my▁hand.\\n▁78.▁regression▁estimates▁of▁expenditure▁on\\n▁play▁was▁no▁more▁than▁a▁figment▁of\\n▁a▁few▁minutes▁later▁from▁a▁nearby▁village,<e><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p><p>'"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"convert_y_label_to_string(y, datamodule.mapping, padding_index=3)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "7aa8c021",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([1, 576, 640])"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x.shape"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "7ef93252",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAHrAAAALzCAYAAABNZGJ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9Z9itV1kvbv9+kFATeg2EIL2JKBsRG1ERpIlbpYaqUvRFt24QNiiCUvVvFxBEIECAgCBIcwNuJPSiCGgEpCUGkhBIIQk1JNf7Yd5LJo9rZT3PqiGc53E8R+a8xxjXuEa5J58WV2cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXHhcZH8nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJ6lgDUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCFjALWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFzIKWAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFzIKGANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwIaOANQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIWMAtYAAAAAAAAAAAAAAAAAAKTtE9oetb/z2Ky2R7Z90vm0T9vr7cucNqvtD7X9eNuz2/7MJsf81/m0vdYy9qLL96u2fVvbs9r+0V5M/dtO2we2fcf+zmOjvfW+7cv1tn1r21/aR3Ndsu1r236x7d/sizk3a3f2vO3hbT+z9v24trfbc9ntXd9u+QIAAAAAAAAAAAAAAAAAfCdSwBoAAAAAAAAAAAAAAAAA4DvMxqKp7HO/l+TpM3PQzLx6q4Nn5j+Xsecujx6S5AtJLjMzj9iDeV5gXFALUV8YtZ3lv29te/jyeX8XuP/5JFdNcsWZuft+zOMCpe3F2r5iKSQ9284LAAAAAAAAAAAAAAAAAAC2UcAaAAAAAAAAAAAAAAAAAOACoO1Vd9J+hbYH7qt89re2F93fOexFhyU5dg/H+/eZmT0YE/aJruzs370fluQ/ZuYbuxD/gF3L7NvGO5LcN8nJ+zsRAAAAAAAAAAAAAAAAAAAueBSwBgAAAAAAAAAAAAAAAADYT9peru0vt31fkiOXZ49u+9m2Z7X9WNufWLr/ZJLPtP2jtjfbjTkvneTvkxzS9uzl75Cl+WJtX7jMfWzb/7E27pC2r2z7+bafbvtrW5z38LafafvYtl9oe1zbI9baj2z7l23f0PZLSX6s7Y3bvrXtGUs+P70h7JXavnnJ95i2h+1g7ou3/cO2/9n2c22f1faSG/J6VNtT2p7U9mfa3qntf7Q9re1jt7LWJe6D235iGf+abXvc9pNJrpPktcveX3wXYl+77bQ9oO2RSR6Q5FFLvNu1vUjb/9P2k21PbfvytlfY4hyHtv3b5bxPbfv05fl1275lefaFti9ue7m1cce1fWTbD7f9YtuXtb3E0rZtrx+xttcPWht72eX+fb7t8W1/e1nLjZM8K8ltljWesfUt69OXfD669k5tm/O5Sy6fbfukbqF4ettLtD1q2Y8z2r6/SzH65Z15zXIHPtH2wTuI8fdtH77h2Yfa/uzy+UbLPT+tq9+Ee6z1u+Iyx5ld/Y5cd4t7s5k1/lSSxya557L/H1prPqztO5d38E1tr7Q27gfavmvZlw+1PXyt7a1tn9z2nUm+nOQ6O1pn299N8jtr8//ici9+e7knpyz35rJL/23vxy+2/c8kb1me/0Lbj7Q9ve0bu4Pfi/PZhwe2/dSy1k937fdraf/DJfan295x7fmDlnnPWsY/dCvznp+Z+frM/OnMvCPJuRvyuVVXv3cXXXv2s9vOr3vgd2LDfN/f9t3LeZ+0vHMXW9qe0faPNvR/Tdvf2NX5AAAAAAAAAAAAAAAAAADYHAWsAQAAAAAAAAAAAAAAAAD2oaVo6O3bvjTJ8Ulun+TJSX667Q2TPDzJrWbm4CR3SHJckszMy5L8RJLzkrxpKZT7K20vv5X5Z+ZLSe6Y5MSZOWj5O3Fp/ukkRye5XJLXJNlWtPgiSV6b5ENJrrHk8ett77DF5V8tyZWWGA9I8lfLmre5T1Z7cXCS9y5zvinJVZL8apIXb+h/RJInLjE/mOTFO5j3aUlukOQWSa63zP87G/K6xNrz5yS5b5JbJvmRJI9r+12bXWTbH0/y1CT3SHL1rM756CSZmesm+c8kd132/mubjbs9M/PArNb9B0u8f8hqr34myW2THJLk9CTP2EL+F03yuiXva2e1L0dva17WdkiSGyc5NMkTNoS4R5KfSvJdSW6e5IFrbVdLctkl5i8mecbaHf6Lpe06S+73T/KgmflIkoclefeyxsttdi2LWyf5ZFb35PFJ/natUO+RSb6R1b343qzex1/aQuwHLDkfmuSKS55fWdqOTvKZrPbq55M8ZbkbG700yb23fWl7kySHJXl9VwXn35zkJVm9B/dK8sylT7I6169mdc9+YfnbLTPT5b+Hz8xbZ+b/JnlKkpct+/89a93vk+RBS24XS/LIZQ3XSPL6JE9KcoXl+SvbXnlt7P2SPCSr9/3zO1rnzDx+w/zPzepOPTDJj2V1Xw7K8nu15rZZ3dE7tL1bVkW4fzbJlZO8Pat935TlHP48yR2X3+YfzOo3Z5tbJ/lYVnfsD5I8t22XtlOS3CXJZZa9+pO237fZuXfVzLw/yalZ3elt7pfkhcvn3fqd2I5zk/xGVntwm6z+d+JXlrYXJLn38r8lWQqd3y6r8wYAAAAAAAAAAAAAAAAAYC9SwBoAAAAAAAAAAAAAAAAAYB9p+/CsClI/Lcm7k1x3Zv7nzPzdzJyTVQHQiye5SdsDZ+a4mfnktvEz828z85v5ZtHgw5N8uu3RbS+zB1J8x8y8YWbOTfKiJNsK1d4qyZVn5vdm5usz86msijzfaxfmeNzMfG1mjsmqwO091tr+bmbeOTPnZVVs+qAkT1vmfEtWRZXvvdb/9TPztqUI9G8luU3bQ9cnW4rIPiTJb8zMaTNzVlbFcNdzPyfJk5czODqrAqx/NjNnzcyxSf59bS8244gkz5uZDyy5PWbJ7dpbiLE7Hpbkt2bmM8v8T0jy820P2OT478+qoO1vzsyXZuarM/OOJJmZT8zMm5cz/HySP86qAO66P5+ZE2fmtKyKkN9ire2cJL83M+fMzBuSnJ3khkvR7Hslecyy78cl+aOsCu7urlOS/Oky58uyKjR857ZXTXKnJL++rPOUJH+Srd3rc7IqXH29mTl3Zv55Zs5c7uEPJXn0sn8fTPLXWRXl3uhVSW7R9rDl+xFJ/nY5u7skOW5mnj8z35iZf0nyyiR3X/bs55L8zpL/v2VVKHhfev7M/MfMfCXJy/PNs75vkjcsvyfnzcybk/xTVvu9zZEzc+zMfCOrgufbXecO5j0iyR/PzKdm5uys3rF7bbjjT1j25StZvRNPnZmPLPM9Jd+655txXpKbtb3kzJy0/DZsc/zMPGf57XxBVgXFr5okM/P6mfnkrByT5E1JfmQL8+6OF2R1FlmKtt8h3ywavbu/E99iufvvWc7vuCTPzvLbMDPvS/LFrIpaJ6t37K0z87ldWhUAAAAAAAAAAAAAAAAAAJumgDUAAAAAAAAAAAAAAAAAwL7zXUkun+SDST6U5NT1xpn5RJJfz6qQ6ClLYepDNgZZiqT+6xLjtCQ3S3LgHsjv5LXPX05yiaWY6WFJDml7xra/JI/NUqB1C06fmS+tfT8+q0LJ25yw9vmQJCcsxazX+19je/2XIranbYiXJFdOcqkk/7yW+/9dnm9z6rKnSfKV5b/rhVW/klUx7c06ZMl1PbdTN+S+Nx2W5FVr6/1IVsXRN3teh2ZVkPcbGxvaXnW5l59te2aSo7Iq+L1u4z1a37tTN8Td1n6lrO7w8WttG897V312ZmZD3EOy2qcDk5y0tlfPTnKVLcR+UZI3Jjm67Ylt/6DtgUv8bQXT1+f9b+tZ+rw+3yycfe8kL14+H5bk1hvevSOSXC2rO3xAvvW9Wd+/fWFHZ31YVkW21/P+4awKO2+znvf5rXN7vuUdWz4fkG+94xvj/9la7NOSNJu8X8vv1j2zKvp8UtvXt73RWpeT1/p+efl4UJK0vWPb97Q9bZn7Tvnv78zeclSSu7a9dJJ7JHn7zJy0tO3u78S3aHuDtq9re/Ly2/CUfOs6/6uY9vLfF+3KPAAAAAAAAAAAAAAAAAAAbI0C1gAAAAAAAAAAAAAAAAAA+8jMPCLJdZP8W5K/SPLptk9se/21Pi+ZmR/OqrjoJPn9bW1tD2r7wLZvSfKBrIqv3nNmbjYz31IMe2epbDH1E5J8emYut/Z38MzcaYtxLr8UUt3mWklO3EFeJyY5tO1FNvT/7Nr3Q7d9aHtQkitsiJckX8iqAPVN13K/7MxspSD1Vp2Y1flty+3SSa6Yb819bzohyR03nNclZmaz85+Q5FpL8fKNnpLVOX33zFwmq0K03QM5fyHJOVnbt3zreW/1zq67Rtv1HLfduxOSfC3Jldb26TIzc9PNBp6Zc2bmd2fmJkl+MMldktx/iX+FtgfvYD0bvTTJvdveJsklkvzj8vyEJMdsOMuDZuaXk3w+yTey9h4sc+wNu/Kb8aINeV96Zp62g5jnt87t+ZZ3LKt1fyPfWnh+Y/yHboh/yZl512YXNDNvnJmfzKoI90eTPGdnY9pePMkrk/xhkqvOzOWSvCF75p3ZqeWdf3eSn01yv3xr0ejd/Z3Y6C+z2pfrL78Nj823rvOoJHdr+z1Jbpzk1bs4DwAAAAAAAAAAAAAAAAAAW6CANQAAAAAAAAAAAAAAAADAPjQzp8zMH8/MzZP8XJLLJXl32+e1vWHbH1+Knn41q8LL5yVJ25/KqmjrPZM8O8k1ZuZXZub9u5DG55Jcse1lN9n/fUnOavvotpdse9G2N2t7q12Y+3fbXqztj2RV7PdvdtDvvUm+nORRbQ9se3iSuyY5eq3Pndr+cNuLJXlikvfMzAnrQWbmvKwKzf5J26skSdtrtL3DLuS+WS9N8qC2t1jO8ilJ3jszx+3FOdc9K8mT2x6WJG2v3PZuWxj/viQnJXla20u3vUTbH1raDk5ydpIvtr1Gkt/cEwnPzLlJXr7kffCS+//Oquhtsrqz11zOequukuTXlnt096yK575hZk5K8qYkf9T2Mm0v0va6bW+72cBtf6ztd7e9aJIzsyrCfd5yD9+V5KnL/t08yS+urWejN2RVkPn3krxsubdJ8rokN2h7vyX/A9vequ2Nlz372yRPaHuptjdJ8oAt7s1mfS7JtTcUlD8/RyW5a9s7LL8Xl2h7eNtr7qD/Dte5g/4vTfIbbb9rKV7/lKz27Rs76P+sJI9pe9MkaXvZ5S5sSturtr3bUoz+a1m9A+ftZFiSXCzJxbMUG297xyS33+y8m8zt4m0vsW2+Za/XC0e/MMmjknx3Vvdlm939ndjo4KzegbPb3ijJtxQfn5nPJHl/VkW0XzkzX9mNuQAAAAAAAAAAAAAAAAAA2CQFrAEAAAAAAAAAAAAAAAAA9pOZ+eeZ+dUkh2RVTPTiSZ6W5AtJTs6q8O5jlu4fS3KjmbnjzLxsZr62G/N+NKsCsJ9qe0bbQ3bS/9ysik3fIsmnl/z+OslmC2Bvc3KS07MqxP3iJA9bctnenF/PqmD1HZf5npnk/hv6vyTJ45OcluSWSe67g3kfneQTSd7T9swk/5DkhlvMfdNm5h+SPC7JK7MqBH3dJPfaW/Ntx58leU2SN7U9K8l7ktx6s4OX875rkusl+c8kn8mqcHqS/G6S70vyxSSvz7cWxN1dv5rkS0k+leQdWZ3v85a2tyQ5NsnJbb+wxbjvTXL9rO7Rk5P8/MycurTdP6siw/+e1d18RZKrbyH21ZYxZyb5SJJjsirQmyT3TnLtrO77q5I8frkb/83yPv9tkttlte5tz8/KquDxvZY4Jyf5/ax+K5Lk4UkOWp4fmeT563HbHtv2iC2sZ0e2FZo/te0HdtZ5KeB9tySPzap48wlZFTvf7r9v38Q6N3peVvv8tqx+k76a1f3ZUT6vWuIdvfwG/FtWvy2bdZGsCqqfmNXvzW2zoUDzDuY9K8mvZVWc/fQk98nq3dyTPpbkK0mukeSNy+fD1tpftXx/1cx8ee35bv1ObMcjs1rfWUmek+Rl2+nzgqwKab9oO20AAAAAAAAAAAAAAAAAAOwFnZn9nQMAAAAAAAAAAAAAAAAAABdybQ9PctTMXHM/pwLwHaXtJ5M8dEcF1PdhHj+a5Kgkh43/owMAAAAAAAAAAAAAAAAAgH3igP2dAAAAAAAAAAAAAAAAAAAAe0bbhyS5zk66fWxmnr+v50zy6T015/6yN/a37dM20e3vZ+aYzcY8n7lumeTum+j6pJk5e3fn25vaPjrJ5XfS7T0z8+pdjH/3JLfcSbdTZuaPdyX+vtb2dklut5Nu58zM4/ZFPhcUba+T5CGb6PqMmTlhb+ezzZ78rWn7c0kmyVs2Ofde+Z1oe2CS/5XkrxWvBgAAAAAAAAAAAAAAAADYd+rfdgIAAAAAAAAAAAAAAAAAXDi0fWuS2+6k2xtn5qf29ZxJnpbkqJm55p6ae1/bG/vbdjP/2PcxM7OZQtc7m+uBSTZTXPvqM3Py7s63N7U9LslhO+n27Jl52C7GPzLJA3bS7WMzc6Ndib+vtX1CksfvpNvXZuYS+yCdC4y2hyf5x010vc3MvGfvZvNNe+q3ZolzkyT3m5k3bnLuB2YP/060vXGSf0ryoSQ/NTNnbmYcAAAAAAAAAAAAAAAAAAC7TwFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAC5mL7O8EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2LMUsAYAAAAAAAAAAAAAAAAAYK9o+yNtP7a/89ietg9s+479ncfe0vbYtofvw/nObnudvTzHtL3e3pxjw3xPaHvUbozfp2dwftoe2fZJ+zuPC6td2d89eZ+dLwAAAAAAAAAAAAAAAAAAO3LA/k4AAAAAAAAAAAAAAAAAAIALp5l5e5Ib7u882l47yaeTHDgz39jP6exxbY9M8pmZ+e1tz2bmpvsyh5k5aE/Ga/vWJEfNzF/vybj70r4+AwAAAAAAAAAAAAAAAAAAgI0usr8TAAAAAAAAAAAAAAAAAAAAuLBoe8D+zoG9p+1F93cOAAAAAAAAAAAAAAAAAACwWQpYAwAAAAAAAAAAAAAAAACwW9reqe2/tz2r7WfbPnJ5fnjbz6z1O67tI9t+uO0X276s7SXW2u/W9oNtz2z7ybY/tTy/bNvntj1pif+kLRaRfdvy3zPant32Nmtz/mHb09t+uu0d157v1pxtr9122j6o7QnLHA9re6tl/We0ffqGMb/Q9iNL3ze2PWyt7UZt39z2tLYfa3uP5flDkhyR5FHL2l67tte3Wz4/oe3L275wOaNj2/6Ptdjf1/Zflra/Wc7lSVvY3yxrvd7y+ci2z2j7+iXme9tedwuxnpzkR5I8fVnT+j7dru3Hl/17RttuZv82Oe93tT1myfnNSa60of2nl707o+1b2954re24to9u++EkX2p7wIYz+P62717GntT26W0vtsX83tr2qW3ft7wjf9f2Cmvtf9P25OXdelvbm+4gzuXbvq7t55e9el3ba661X6Ht89ueuLS/eq3tLl29o2e0fVfbm29lDdvJZWe/CQ9u+4nl3r+m7SFbiP1jbf917fub275/7fvb2/7M8vnGy/6esZzxT6/1O7LtX7Z9Q9svJfmxtt/b9gPLXXlZkktk12z3Pre9btu3tD217Rfavrjt5dZy2lPzAwAAAAAAAAAAAAAAAABwIaeANQAAAAAAAAAAAAAAAAAAu+u5SR46MwcnuVmSt5xP33sk+akk35Xk5kkemKwK/CZ5YZLfTHK5JD+a5LhlzJFJvpHkekm+N8ntk/zSFvL70eW/l5uZg2bm3cv3Wyf5WFaFiv8gyXPXCiLv7pzb3DrJ9ZPcM8mfJvmtJLdLctMk92h722RVvDvJY5P8bJIrJ3l7kpcubZdO8uYkL0lylST3SvLMtjeZmb9K8uIkf7Cs7a47yOOnkxyd1d6+JsnTl9gXS/KqZb1XWOb8n7uwzo3uleR3k1w+ySeSPHmzA2fmt7Ja/8OXNT18rfkuSW6V1d25R5I7JOe/f1vwkiT/nNV9eGKSB2xraHuDJd6vL/HfkOS1G4pQ3zvJnbO6Z9/YEPvcJL+xxL5Nkp9I8itbzC9J7p/kF5JcPav7+edrbX+f1V27SpIPZHUvtuciSZ6f5LAk10rylSz3YfGiJJfK6o5eJcmfJKuiyUmel+ShSa6Y5NlJXtP24ruwjnU7+k348SRPXdqvnuT4rO7wZr0nyfXbXqntgUvsQ9oe3PaSSf5Hkrcvba9N8qas1vurSV7c9oZrse6T1R0+OMn7krw6q326QpK/SfJzW171ynbvc5JmtfZDktw4yaFJnpD81zu7p+YHAAAAAAAAAAAAAAAAAOBCTgFrAAAAAAAAAAAAAAAAAAB21zlJbtL2MjNz+sx84Hz6/vnMnDgzp2VVNPYWy/NfTPK8mXnzzJw3M5+dmY+2vWqSOyX59Zn50sycklVB3XvtgbyPn5nnzMy5SV6QVZHcq+7hOZ84M1+dmTcl+VKSl87MKTPz2ayKLH/v0u9hSZ46Mx9Zih8/Jckt2h6WVZHb42bm+TPzjZn5lySvTHL3LeTxjpl5w7LWFyX5nuX5DyQ5IKtzOWdm/jarAr2761Uz875lLS/ON895dz1tZs6Ymf9M8o9rcc9v/3aq7bWyKiT8uJn52sy8Lav7uc09k7x+uZ/nJPnDJJdM8oNrff58Zk6Yma9sjD8z/zwz71nO77isij/fdgvr3uZFM/NvM/OlJI/Lqgj6RZc5njczZ83M17Iqdvw9bS+7nVxOnZlXzsyXZ+asrAozbyukfvUkd0zysOVdPmdmjlmGPiTJs2fmvTNz7sy8IMnXsrpDu2NHvwlHZPWb8IFlTY9Jcpu2195M0OUc3p9VAftbJvlQkncm+aEl54/PzKnL54Oyultfn5m3JHldVgXJt/m7mXnnzJy35Hdgkj9d9ucVyzy7Yrv3eWY+sdy1r83M55P8cb55X35gD84PAAAAAAAAAAAAAAAAAMCFnALWAAAAAAAAAAAAAAAAAADsrp/LquDz8W2PaXub8+l78trnL2dVODZJDk3yye30PyyrYq0ntT2j7RlZFf+9ym5nvZbLzHx5+XjQHp7zc2ufv7Kd79vWf1iSP1ub77QkTXKNpe3W29qW9iOSXG0LeWzc90u0PSDJIUk+OzOz1n7CFuJudr6DdtRxD8U9v/3bjEOSnL4Uht7m+A3t//V9KWR8wob4O9y3tjdo+7q2J7c9M6sC21faZG7r1uc4Pqt7eqW2F237tLafXOIft/T5b3O0vVTbZ7c9fun7tiSXWwphH5rktJk5fTtzH5bkERvu4aFZ7c3u2NGZbtzzs5Ocms2faZIck+TwrIpYH5PkrVkVgr7t8n3bPCcsZ7rN8dnx2W7vnVm/K1ux3bW3vWrbo9t+djmjo/LNs9yT8wMAAAAAAAAAAAAAAAAAcCGngDUAAAAAAAAAAAAAAAAAALtlZt4/M3fLqsDzq5O8fBfCnJDkujt4/rUkV5qZyy1/l5mZm24lxV3IZXfn3KoTkjx0bb7LzcwlZ+ZdS9sxG9oOmplfXsZudX3rTkpyjbZde3bobsTbU3blzHa0f5txUpLLt7302rNrrX0+MasCzkmSZb8OTfLZTeb8l0k+muT6M3OZJI/NqsD2Vq2fzbWSnJPkC0nuk+RuSW6X5LJJrr0t1e3EeESSGya59ZLLj671PSHJFdpebjvjTkjy5A17fKmZeekurGMzNu75pZNcMd+65zuzsYD1MfnvBaxPTHJo2/V/e3+t7Phst/fOrN+VPeEpy5zfvZzRffPNs9wX8wMAAAAAAAAAAAAAAAAAcCGhgDUAAAAAAAAAAAAAAAAAALus7cXaHtH2sjNzTpIzk5y3C6Gem+RBbX+i7UXaXqPtjWbmpCRvSvJHbS+ztF237W23EPvzS07X2UznPTTnVj0ryWPa3jRJ2l627d2XttcluUHb+7U9cPm7VdsbL+2fyybXth3vTnJukoe3PaDt3ZJ8/26sY0/Z6prOb/92amaOT/JPSX53udM/nOSua11enuTOy/08MKsi0F9LstkC2Qdn9W6c3fZGSX55J/135L5tb9L2Ukl+L8krZubcJf7Xkpya5FJZFUA+v1y+kuSMtldI8vhtDcvd//skz2x7+eWubStw/ZwkD2t7665cuu2d2x6cJG2PbHvkLq5re16a1W/CLdpefFnTe2fmuC3EeFdWxbq/P8n7ZubYrIpi3zrJ25Y+703y5SSPWtZ7eFZnf/QOYr47yTeS/NrS/2ez59+Zg5OcneSLba+R5Df38fwAAAAAAAAAAAAAAAAAAFxIKGANAAAAAAAAAAAAAAAAAMDuul+S49qemeRhSY7YaoCZeV+SByX5kyRfTHJMVoVmk+T+SS6W5N+TnJ7kFUmuvoXYX07y5CTvbHtG2x/YxLDdmnOrZuZVSX4/ydHLPv5bkjsubWcluX2SeyU5McnJS9+LL8Ofm+Qmy9pevcV5v57kZ5P8YpIzktw3q4LZX9u9Fe22P0vy821Pb/vnO+t8fvu3BffJqrDxaVkVdX7hWvyPZbU3f5HkC1kVOL7rsn+b8cgl/llZFYJ+2RZz2+ZFSY7M6g5cIsmvLc9fmOT4JJ/N6s6+53xi/GmSS2a1jvck+b8b2u+X5JwkH01ySpJfT5KZ+ackD07y9KzeiU8keeDauEOTvHPrS9q+mfmHJI9L8sokJyW5blbvwFZifCnJB5Icu3ZW705y/MycsvT5elbneces9uSZSe4/Mx/dQcxt78wDs7or90zyt1vJaxN+N8n3ZfVb+Pr1+PtofgAAAAAAAAAAAAAAAAAALiQ6M/s7BwAAAAAAAAAAAAAAAAAA4AKi7XuTPGtmnr+/c+Gb2r41yVEz89f7O5eN2l4syYeS3Hxmztnf+QAAAAAAAAAAAAAAAAAAACsH7O8EAAAAAAAAAAAAAAAAAAC4YGp7+SSP3kTXl8zMh/d2Phu1vXuSW+6k2ykz88ffznPubW1vm+RjSb6Q5IgkN0/yf9veLsntdjL8nJl53CbnuU6Sh2yi6zNm5oTNxLwgzrkVW8lvb+eyO2bm60lunCRtb5nk7psY9qSZOXurc12Qz3RPvzMAAAAAAAAAAAAAAAAAALC7FLAGAAAAAAAAAAAAAAAAAGBHLpvNFbD+YJJ9XsA6yZ2TPGAnfT6WZE8Wk94fc+5tN0zy8iSXTvKpJD8/Mye1fWh2fv5fS7LZYrzX2kS8JHl1kj1VeHh/zLkVW8nv28V3Z3Nr+tMkWy5gnQv2mf5w9uw7AwAAAAAAAAAAAAAAAAAAu6Uzs79zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYA+6yP5OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD1LAWsAAAAAAAAAAAAAAAAAANjL2h7X9nb7O49t2j627V/v7zy+3bV9a9tf2l/x2x7R9k1r33+o7cfbnt32Z/ZWXntS22st+V50E30Pb/uZfZEXAAAAAAAAAAAAAAAAAABcGChgDQAAAAAAAAAAAAAAAAAAe1DbI9s+aX/ncX5m5ikzs9cKL387uKAVFd8VM/Pimbn92qPfS/L0mTloZl7ddtpeb3/ltxkz859Lvufu71wAAAAAAAAAAAAAAAAAAODCRgFrAAAAAAAAAAAAAAAAAAD4NtH2gP2dA0lX9uu/1d7BXTgsybH7OhcAAAAAAAAAAAAAAAAAAOCCSQFrAAAAAAAAAAAAAAAAAADYQ9o+JMkRSR7V9uy2r11rvkXbD7f9YtuXtb3E2ri7tP1g2zPavqvtzdfajmv76LYfTvKltge0/YGl3xltP9T28C3m+YS2Ry2fL9H2qLanLvHe3/aqW4j1/W3fvYw9qe3T215srX3aPqztx5c+z2jbLea7w/W2fVDbj7Q9q+2n2j50re1KbV+3jDut7dvbXqTti5JcK8lrl3N61CbmeWvbJ7d9Z5IvJ7nOWtvFlvjfvfbsKm2/3PbKW1jnT7b96HJHnp6ka20PbPvOtn/S9tQkT1ievWNp/+SS07Y1vXsZ+qHl+z03mUOXOU5pe2bbf217s6XtyLbPavvmZb+PaXvY2tgbLW2ntf1Y23ustV2y7R+1PX5Z3zuWZ9de7sgBS78dnicAAAAAAAAAAAAAAAAAALA1ClgDAAAAAAAAAAAAAAAAAMAeMjN/leTFSf5gZg6ambuuNd8jyU8l+a4kN0/ywCRp+71JnpfkoUmumOTZSV7T9uJrY++d5M5JLpfkqklen+RJSa6Q5JFJXrmVQskbPCDJZZMcusz/sCRf2cL4c5P8RpIrJblNkp9I8isb+twlya2yWvc9ktxhs8HbXiPnv95TlviXSfKgJH/S9vuWtkck+UySK2e1b49NMjNzvyT/meSuyzn9wSbmSZL7JXlIkoOTHL/t4cx8PcnRSe671vfeSf7fzHx+k+u8UpK/TfLbWe3lJ5P80IZut07yqWUtT15vmJnrbljTbZam71m+v2wzeSS5fZIfTXKDrO7FPZKcutZ+RJInLjl+MKv7nraXTvLmJC9JcpUk90ryzLY3Wcb9YZJbJvnBrPb3UUnO287853eeAAAAAAAAAAAAAAAAAADAFihgDQAAAAAAAAAAAAAAAAAA+8afz8yJM3NaktcmucXy/CFJnj0z752Zc2fmBUm+luQHNow9YWa+klWR5DfMzBtm5ryZeXOSf0pyp13M65ysCldfb5n/n2fmzM0OXvq/Z2a+MTPHZVWA+7Ybuj1tZs6Ymf9M8o/55to343zXOzOvn5lPzsoxSd6U5EfW1nb1JIfNzDkz8/aZmV2ZZ3HkzBy7rPWcDeNfkOTebbt8v1+SF21hnXdKcuzMvGKJ/adJTt7Q58SZ+Ytl/q0UGd+Kc7Iq0H2jJJ2Zj8zMSWvtr5+Zt83M15L8VpLbtD00q6LTx83M85f8/iXJK5Pcve1FkvxCkv81M59d7tm7lhjfYifnCQAAAAAAAAAAAAAAAAAAbIEC1gAAAAAAAAAAAAAAAAAAsG+sFyP+cpKDls+HJXlE2zO2/SU5NMkha/1PWPt8WFZFgdf7/3BWhZp3xYuSvDHJ0W1PbPsHbQ/c7OC2N2j7urYntz0zyVOSXGlDtx2tfTPOd71t79j2PW1PW9rutDb//5fkE0ne1PZTbf/Prs6zOGG7I5PMzHuXtR3e9kZJrpfkNVtY5yHr8ZdC2xvn2+H8e8rMvCXJ05M8I8kpbf+q7WW2l8PMnJ3ktKxyPyzJrTfs3xFJrpbVeVwiySd3Nv9OzhMAAAAAAAAAAAAAAAAAANgCBawBAAAAAAAAAAAAAAAAAGDPmi32PyHJk2fmcmt/l5qZl+4g5glJXrSh/6Vn5mm7lOzMOTPzuzNzkyQ/mOQuSe6/hRB/meSjSa4/M5dJ8tgk3ZVcdmCH62178SSvTPKHSa46M5dL8oZt88/MWTPziJm5TpKfTvK/2/7EEnfjOW1mX3d2ti9Ict8k90vyipn56hbWeVJWhcuTJG27/n2T8+8RM/PnM3PLJDdJcoMkv7nWvJ7jQUmukOTErPbvmA37d9DM/HKSLyT5apLrnt+8OztPAAAAAAAAAAAAAAAAAABgaxSwBgAAAAAAAAAAAAAAAACAPetzSa6zhf7PSfKwtrfuyqXb3rntwTvof1SSu7a9Q9uLtr1E28PbXnNXkm37Y22/u+1Fk5yZ5Jwk520hxMHLuLPb3ijJL+9KHufj/NZ7sSQXT/L5JN9oe8ckt982sO1d2l5vKQb9xSTn5ptr23hOe2Jfj0ryP7MqYv3CLa7z9Ulu2vZn2x6Q5NeSXG2LMTba6l1M21std/HAJF/KqvD0+n24U9sfbnuxJE9M8p6ZOSHJ65LcoO392h64/N2q7Y1n5rwkz0vyx20PWfb3NkvB6nXne54AAAAAAAAAAAAAAAAAAMDWKGANAAAAAAAAAAAAAAAAAAB71nOT3KTtGW1fvbPOM/NPSR6c5OlJTk/yiSQPPJ/+JyS5W5LHZlXo94Qkv5ld/7fDV0vyiqyKUH8kyTFJXrSF8Y9Mcp8kZ2VVjPtlu5jHdp3femfmrKwKPb88q727T5LXrA2/fpJ/SHJ2kncneebM/OPS9tQkv72c0yP3xL4uMT6QZJK8fYvr/EKSuyd5WpJTl9zfuZUY2/GEJC9Y1niPTY65TFbneHqS45dc/r+19pckeXyS05LcMqti3VnO4vZJ7pXkxCQnJ/n9rApSJ6t78q9J3r+M/f1s2NtNnCcAAAAAAAAAAAAAAAAAALAFnZn9nQMAAAAAAAAAAAAAAAAAAMCFQtvnJTlxZn57f+eyp7U9MslnLoxrAwAAAAAAAAAAAAAAAACAC6MD9ncCAAAAAAAAAAAAAAAAAADw7aDt5ZM8ehNdXzIzH97b+WxP26dtotvfz8wx+zLWDuLfPcktd9LtlJn5412Jvz+0vXaSn03yvWvPbpfkdjsZes7MPG4vpnaByQMAAAAAAAAAAAAAAAAAANh3FLAGAAAAAAAAAAAAAAAAAIDNuWw2V8D6g0n2SwHrbC6/M5Jspuj0noy1PXdO8oCd9PlYkm+LAtZtn5jkN5I8dWY+vdb0w9n5Xn4tyd4uHH1ByQMAAAAAAAAAAAAAAAAAANhHOjP7OwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2oIvs7wQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYsxSwBgAAAAAAAAAAAAAAAAAA2AfaXrvttD1gf+cCAAAAAAAAAAAAAAAAAABc+ClgDQAAAAAAAAAAAAAAAAAAsEHbB7Z9x/7OY1e0neW/b217+P7NBgAAAAAAAAAAAAAAAAAA2F8UsAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALiQUcAaAAAAAAAAAAAAAAAAAAD4b9reqe2/tz2r7WfbPnKt7cFtP9H2tLavaXvIWtu0/ZW2H1/GPrHtddu+q+2ZbV/e9mJr/e/S9oNtz1j63Hyt7cZt37q0Hdv2p9fajmz7jLavX+Z5b9vrrrXfqO2blxw/1vYeW1j7jZM8K8lt2p7d9ozl+WXbvrDt59se3/a32+7yv9lue8iyf6ct+/ngtedfaXuFtb7f2/YLbQ9cvv9C24+0Pb3tG9setqt5AAAAAAAAAAAAAAAAAAAAF04KWAMAAAAAAAAAAAAAAAAAANvz3CQPnZmDk9wsyVuSpO2PJ3lqknskuXqS45McvWHsHZLcMskPJHlUkr9Kct8khy6x7r3E+t4kz0vy0CRXTPLsJK9pe/GlUPNrk7wpyVWS/GqSF7e94do890ryu0kun+QTSZ68xL10kjcnecky9l5Jntn2JptZ+Mx8JMnDkrx7Zg6amcstTX+R5LJJrpPktknun+RBm4m5A0cn+UySQ5L8fJKntP3xmTkxybuT/Nxa3/skecXMnNP2bkkem+Rnk1w5yduTvHQt/y7/PXxm3rob+QEAAAAAAAAAAAAAAAAAAN/GFLAGAAAAAAAAAAAAAAAAAAC255wkN2l7mZk5fWY+sDw/IsnzZuYDM/O1JI9Jcpu2114b+wczc+bMHJvk35K8aWY+NTNfTPL3Sb536feQJM+emffOzLkz84IkX8uq8PUPJDkoydNm5usz85Ykr8tS/Hrxqpl538x8I8mLk9xieX6XJMfNzPNn5hsz8y9JXpnk7ru6GW0vmlUh7MfMzFkzc1ySP0pyv12Md2iSH0ry6Jn56sx8MMlfZ1UUO1kV395W6LvL3C9Z2h6W5Kkz85Fl7U9Jcou2h+1KLgAAAAAAAAAAAAAAAAAAwIWTAtYAAAAAAAAAAAAAAAAAAMD2/FySOyU5vu0xbW+zPD8kyfHbOs3M2UlOTXKNtbGfW/v8le18P2j5fFiSR7Q9Y9tfkkOXOQ5JcsLMnLc29vgN85y89vnLG+LeekPcI5JcbTML34ErJTkwa2vfTj5bcUiS02bmrB3Ee2VWhcGvnuRHk5yX5O1L22FJ/mxtbacl6W7kAgAAAAAAAAAAAAAAAAAAXAgdsL8TAAAAAAAAAAAAAAAAAAAALnhm5v1J7tb2wCQPT/LyrIpLn5hVAeUkSdtLJ7liks/uwjQnJHnyzDx5Y0PbH0lyaNuLrBWxvlaS/9hk3GNm5id3IadtZsP3LyQ5J6u1//taPruy7mS1j1doe/BaEev/ijczp7d9U5J7JrlxkqNnZltO2/btxbs4NwAAAAAAAAAAAAAAAAAA8B3gIvs7AQAAAAAAAAAAAAAAAAAA4IKl7cXaHtH2sjNzTpIzk2wrIv3SJA9qe4u2F0/ylCTvnZnjdmGq5yR5WNtbd+XSbe/c9uAk703y5SSPantg28OT3DXJ0ZuI+7okN2h7v2XsgW1v1fbGW8jtc0mu2fZiSTIz52ZVxPvJbQ9ue1iS/53kqC3E/C8zc0KSdyV5attLtL15kl/cEO8lSe6f5OeXz9s8K8lj2t40Sdpetu3ddyUPAAAAAAAAAAAAAAAAAADgwksBawAAAAAAAAAAAAAAAAAAYHvul+S4tmcmeViSI5JkZv4hyeOSvDLJSUmum+ReuzLBzPxTkgcneXqS05N8IskDl7avZ1Ww+o5JvpDkmUnuPzMf3UTcs5LcfsnrxCQnJ/n9JBffQnpvSXJskpPbfmF59qtJvpTkU0nekVVR6edtIeZG905y7SXHVyV5/LK/27wmyfWTnDwzH9r2cGZeldV6jl7O59+y2qcdWgqSH7sbuQIAAAAAAAAAAAAAAAAAAN9mOjP7OwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2oAP2dwIAAAAAAAAAAAAAAAAAAMC+0/bySR69ia4vmZkP7+189rW2j05y+Z10e8/MvHoLMe+e5JY76XbKzPzxZmMCAAAAAAAAAAAAAAAAAADsrs7M/s4BAAAAAAAAAAAAAAAAAADYR9peO8mnN9H13jNz9F5OZ59re1ySw3bS7dkz87AtxDwyyQN20u1jM3OjzcYEAAAAAAAAAAAAAAAAAADYXQpYAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXMhcZH8nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJ6lgDUAAAAAAAAAAAAAAAAAAOxhbR/Y9h17MF7bPr/t6W3ft6fibnLuaXu9fTnnntD2yLZPOp/2fbKutke0fdPenmd/2dN3/YIyFwAAAAAAAAAAAAAAAAAAXBgoYA0AAAAAAAAAAAAAAAAAABd8P5zkJ5Ncc2a+f29N0vatbX9pb8X/TjQzL56Z2+/vPAAAAAAAAAAAAAAAAAAAgO88ClgDAAAAAAAAAAAAAAAAAMAF32FJjpuZL211YNsD9kI+F2htL7q/cwAAAAAAAAAAAAAAAAAAANjfFLAGAAAAAAAAAAAAAAAAAIDd1PaKbV/T9sy270ty3Q3tP9j2/W2/uPz3B7cQ+xeT/HWS27Q9u+3vLs8f3PYTbU9b5j5kbcy0/f+1/XiSj29ynicn+ZEkT1/mefpa8+3afrztGW2f0bZr436h7Ufant72jW0P28Lafqztv659f3Pb9699f3vbn1k+37jtW5ccjm3702v9jmz7l23f0PZLSX5sO3P9ZtuT2p7Y9hc2m+Pa+Ce0PWrt+7WXfT5g+f7Atp9qe1bbT7c9Yu35O9bGTduHbW8/21607R+1/cIS4+Hrc2whz79pe9SSy7+2vUHbx7Q9pe0JbW+/9L1723/eMP5/t/27XdifP1zuwKfb3nHt+YOW+3HWsj8PXWs7vO1n2j5iye2ktg9aaz/f9woAAAAAAAAAAAAAAAAAADh/ClgDAAAAAAAAAAAAAAAAAMDue0aSrya5epJfWP6SJG2vkOT1Sf48yRWT/HGS17e94mYCz8xzkzwsybtn5qCZeXzbH0/y1CT3WOY8PsnRG4b+TJJbJ7nJJuf5rSRvT/LwZZ6HrzXfJcmtktx8mfMOy9ruluSxSX42yZWX8S/dzHyL9yS5ftsrtT1wiX9I24PbXjLJ/0jy9qXttUnelOQqSX41yYvb3nAt1n2SPDnJwUnesT5J259K8sgkP5nk+klut4Ucd6rtpbM63zvOzMFJfjDJB89nyHb3M8mDk9wxyS2SfF9WZ7gr7prkRUkun+Rfkrwxq39bfo0kv5fk2Uu/1yT5rrY3Xht7vyQv3OJ8t07ysSRXSvIHSZ67VuT8lKzWe5kkD0ryJ22/b23s1ZJcdsntF5M8o+3ll7YdvlcAAAAAAAAAAAAAAAAAAMDOKWANAAAAAAAAAAAAAAAAAAC7oe1Fk/xckt+ZmS/NzL8lecFalzsn+fjMvGhmvjEzL03y0ayKDO+qI5I8b2Y+MDNfS/KYJLdpe+21Pk+dmdNm5iu7Mc82T5uZM2bmP5P8Y1YFlpNVYe2nzsxHZuYbSZ6S5BZtD9tM0CW39yf50SS3TPKhJO9M8kNJfiCrfTt1+XzQksfXZ+YtSV6X5N5r4f5uZt45M+fNzFc3THWPJM+fmX+bmS8lecIW178Z5yW5WdtLzsxJM3Ps+fTd0X7eI8mfzcxnZub0JE/bxVzePjNvXM7kb7IqLv60mTknq0Ln1257ueXuvCzJfZOk7U2TXDurvd2K42fmOTNzblZ3/+pJrpokM/P6mfnkrByTVRHyH1kbe06S35uZc2bmDUnOTnLDTbxXAAAAAAAAAAAAAAAAAADATihgDQAAAAAAAAAAAAAAAAAAu+fKSQ5IcsLas+PXPh+y4fu29mvsxpzfEnNmzk5y6oaYJ2wctBtOXvv85ayKSSfJYUn+rO0Zbc9IclqSZmtrOybJ4VkVsT4myVuT3Hb5O2bpc0iSE2bmvLVxG/fw/NZ7SHZ8PrttKYp9z6wKep/U9vVtb3Q+Q3a0nxvz3NUz/Nza568k+cJSXHrb96zN+YIk92nbJPdL8vKlsPVW/Nd6ZubL6/Hb3rHte9qettyROyW50trYU5dC29ts24+dvVcAAAAAAAAAAAAAAAAAAMBOKGANAAAAAAAAAAAAAAAAAAC75/NJvpHk0LVn11r7fGJWhZ6zof2zuzHnt8Rse+kkV9wQc3Yh7lbHnJDkoTNzubW/S87Mu7YQY2MB62Py3wtYn5jk0Lbr/z564x6eX+4nZcfns1lfSnKpte9XW2+cmTfOzE8muXqSjyZ5zi7McVKSa659P3RHHfeUmXlPkq8n+ZEk90nyoj0Vu+3Fk7wyyR8muerMXC7JG7Iqcr4zO3uvAAAAAAAAAAAAAAAAAACAnVDAGgAAAAAAAAAAAAAAAAAAdsPMnJvkb5M8oe2l2t4kyQPWurwhyQ3a3qftAW3vmeQmSV63G9O+NMmD2t5iKRL8lCTvnZnjdiNmknwuyXW20P9ZSR7T9qZJ0vaybe++xTnfleSGSb4/yftm5tisinPfOsnblj7vTfLlJI9qe2Dbw5PcNcnRm5zj5Uke2PYmbS+V5PFbzDFJPpjkR9teq+1lkzxmW0Pbq7a921JI/GtJzk5y3i7M8fIk/6vtNdpeLsmjdyHGrnhhkqcnOWdm3rEH414sycWzFKNue8ckt9/MwE28VwAAAAAAAAAAAAAAAAAAwE4oYA0AAAAAAAAAAAAAAAAAALvv4UkOSnJykiOTPH9bw8ycmuQuSR6R5NQkj0pyl5n5wq5ONjP/kORxSV6Z5KQk101yr12Nt+bPkvx829Pb/vkm8nhVkt9PcnTbM5P8W5I7bmXCmflSkg8kOXZmvr48fneS42fmlKXP17MqWH3HJF9I8swk95+Zj25yjr9P8qdJ3pLkE8t/t2Rm3pzkZUk+nOSf860FyC+S5H8nOTHJaUlum+SXtzpHkuckedMyx79kVfz8G0nO3YVYW/GiJDdLctSeDDozZyX5tawKc5+e5D5JXrOFEDt8r5Kk7bFtj9gjyQIAAAAAAAAAAAAAAAAAwIVQZ2Z/5wAAAAAAAAAAAAAAAAAAAMAGbe+Y5Fkzc9henueSSU5J8n0z8/G9ORcAAAAAAAAAAAAAAAAAALDvHLC/EwAAAAAAAAAAAAAAAAAAgAuqtpdP8uhNdH3JzHx4F+I/bRPd/n5mjtlq7LU5rpPkIZvo+oyZOWFX59nfc+6qto9OcvmddHvPzLx6H+RyySQ/luRNSa6a5PFJXrW07c278stJ3r9evPqCtC8AAAAAAAAAAAAAAAAAAMCu6czs7xwAAAAAAAAAAAAAAAAAAOACqe21k3x6E13vPTNH70L8zfxj38fMzGaKF+9ojsOT/OMmut5mZt6zq/Ps7zl3Vdvjkhy2k27PnpmH7YNcLpXkmCQ3SvKVJK9P8r9m5sy9dVeW9TfJz8zMv2x4foHYFwAAAAAAAAAAAAAAAAAAYNcoYA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAhc5H9nQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7lgLWAAAAAAAAAAAAAAAAAADwbabts9o+bn/nsVXfrnlvVdsfavvxtme3/ZndiPPWtr+0B1P7ttP2gW3fsfb97LbX2Z85AQAAAAAAAAAAAAAAAADAtwsFrAEAAAAAAAAAAAAAAAAAuEBp+/dLkdptf19v+69r7bdo+/a2X2z7me+EgsgbzczDZuaJ+zuP87Ox8HCyd/NuO22vtzdi74LfS/L0mTloZl69mQFtn9D2qL2b1re/ZU8/lSRtj2z7pP2dEwAAAAAAAAAAAAAAAAAAXFApYA0AAAAAAAAAAAAAAAAAwAXKzNxxKVJ70MwclORdSf5mrctLkrwtyRWS3DbJr7T96T01f9sD9lSsvRGPbwuHJTl2fyfB+fNuAgAAAAAAAAAAAAAAAABwYaeANQAAAAAAAAAAAAAAAAAAF1htr53kR5K8cO3xtZO8eGbOnZlPJnlHkpvuxhyHt/1M20e3PTnJ89tepO3/afvJtqe2fXnbK6yNuX/b45e2x7U9ru3tlrYntH1F26PanpnkgW0v2/a5bU9q+9m2T2p70aX/9doe0/aLbb/Q9mXL87b9k7antD2z7b+2vdnSdmTbJ63l8+C2n2h7WtvXtD1krW3aPqztx9ue0fYZbbvFPfqBtu9axn+o7eFrbQ9s+6m2Z7X9dNsj2t44ybOS3Kbt2W3P2Jj32r4/alnjSW1/pu2d2v7HspbHrs3z/W3fveRwUtunt73Y0va2pduHlvnuuTy/S9sPLmPe1fbma/EevZzFWW0/1vYntrgn293ztp9Mcp0kr11yufgmYv1Ukscmuecy5kNrzYe1feeS55vaXmlt3A7PZZNr2OE9b/uXbV+51vf32/6/5V5uO7vHLnf2uLZHrPW9eNs/bPufbT/X9lltL7m0bRv7iLVzf9Da2Csu+3lm2/clue6GnKerd+YhSY5I8qhlz1673r7Wf3t3btPv+ib38cZt37qcw7Ftf3rD/M9o+/rlDN/b9rrnFw8AAAAAAAAAAAAAAAAAAPYUBawBAAAAAAAAAAAAAAAAALggu3+St8/McWvP/jTJ/dse2PaGSW6T5B92c56rJblCksOSPCTJryb5mSS3TXJIktOTPCNJ2t4kyTOzKp579SSXTXKNDfHuluQVSS6X5MVJjkzyjSTXS/K9SW6f5JeWvk9M8qYkl09yzSR/sTy/fZIfTXKDZY57JDl1Y+JtfzzJU5f2qyc5PsnRG7rdJcmtktx86XeHnW/Jf8W/RpLXJ3lSVnv0yCSvbHvltpdO8udJ7jgzByf5wSQfnJmPJHlYknfPzEEzc7kdhL9akktktX+/k+Q5Se6b5JZZFS5/XNvvWvqem+Q3klwpqzP/iSS/kiQz86NLn+9Z5ntZ2+9N8rwkD01yxSTPTvKapbjyDZM8PMmtlrzvkOS4LezJDvd8Zq6b5D+T3HXJ5Ws7izcz/zfJU5K8bBnzPWvN90nyoCRXSXKxrPb/fM9ls+vI+dzzJI9I8t1dFSj/kSS/mOQBMzNL+9WyOotrJHlAkr9a9jVJnpbVvb1FVnd+2/lmbey29+YXkzyj7eWXtmck+WpW+/oLy99/MzN/ldW79QfLnt11k2ve9Lu+GW0PTPLarN7hqyzxXry2F0lyryS/m9U7/okkT95sfAAAAAAAAAAAAAAAAAAA2B0KWAMAAAAAAAAAAAAAAAAAcEF2/6yKP697XZKfT/KVJB9N8tyZef9uznNeksfPzNdm5itZFV/+rZn5zFKA+AlJfr7tAcvcr52Zd8zM17MqzDsb4r17Zl49M+cluUySOyX59Zn50syckuRPsipqmyTnZFVM95CZ+erMvGPt+cFJbpSkM/ORmTlpO7kfkeR5M/OBJdfHJLlN22uv9XnazJwxM/+Z5B+zKiy8WfdN8oaZecPMnDczb07yT8uatu3dzdpecmZOmpljtxD7nCRPnplzsioAfaUkfzYzZy1x/j3J9yTJzPzzzLxnZr6xFDR/dlZFh3fkIUmePTPvnZlzZ+YFSb6W5AeyKoZ98SQ3aXvgzBw3M5/cQt6b2fM95fkz8x/LvXx5vnl2OzuXzdjhPZ+ZLye5X5I/TnJUkl+dmc9sGP+45Z05Jqti2vdo26z2/jdm5rSZOSur4tz3Wht3TpLfm5lzZuYNSc5OcsO2F03yc0l+Z3lX/i3JC7awns3Yyru+GT+Q5KCs3rGvz8xbsvqNuvdan1fNzPtm5htZFd2+xR5aCwAAAAAAAAAAAAAAAAAAnC8FrAEAAAAAAAAAAAAAAAAAuEBq+8NJrpbkFWvPrpDk/yb5vSSXSHJokju0/ZXdnO7zM/PVte+HJXlV2zPanpHkI1kVPb5qkkOSnLCt41Lo99QN8U5Y+3xYkgOTnLQW79lJrrK0PypJk7yv7bFtf2GJ+5YkT0/yjCSntP2rtpfZTu6HJDl+LZ+zl3yusdbn5LXPX86q4O5mHZbk7ttyX/L/4SRXn5kvJblnVkWAT2r7+rY32kLsU2fm3OXzV5b/fm6t/Svbcm17g7ava3ty2zOzKop8pZ3k/YgNeR+aVaHwTyT59ayKFZ/S9ui2h2wh783s+Z6yo7Pb4blsIfb53fPMzHuTfCqr+/nyDWNPX85/m+Oz2pcrJ7lUkn9ei/t/l+fbnLoUc964risnOSDf+v4cnz1rK+/6ZhyS5ISlWP02x2fPvX8AAAAAAAAAAAAAAAAAALDLFLAGAAAAAAAAAAAAAAAAAOCC6gFJ/nYpDrzNdZKcOzMvnJlvzMxnkhyd5E67Odds+H5CkjvOzOXW/i4xM59NclKSa27r2PaSSa54PvFOSPK1JFdai3WZmblpkszMyTPz4Jk5JMlDkzyz7fWWtj+fmVsmuUmSGyT5ze3kfmJWRXi35XPpJZ/PbnUTduCEJC/asBeXnpmnLTm+cWZ+MqvCyR9N8pzt7MGe8JdL/OvPzGWSPDarwsrnl/eTN+R9qZl56ZL3S2bmh7Pau0ny+1vIZW/s+Vb363zPZQsxdnTP0/b/l+TiWa33URvGXn5Z9zbXWvp9IavC4zddi3nZmdlM0ebPJ/lGVoXG1+PuyPb27MtZFdDe5mo7GXO+e7AJJyY5tO36v92/Vvbc+wcAAAAAAAAAAAAAAAAAALtMAWsAAAAAAAAAAAAAAAAAAC5wlqLQ90hy5Iam/1g19z5tL9L2aknumeTDeziFZyV5ctvDlnyu3PZuS9srkty17Q+2vViSJ+R8CinPzElJ3pTkj9peZsn7um1vu8S+e9ttBbFPz6rA7nltb9X21m0PTPKlJF9Nct52pnhpkge1vUXbiyd5SpL3zsxxu7UD33RUVuu9Q9uLtr1E28PbXrPtVdvebSlk/LUkZ6/l+Lkk11z2aE84OMmZSc5ue6Mkv7yh/XNZFTjf5jlJHrbsYdteuu2d2x7c9oZtf3zZr69mVXB5e3u7I3tjzz+X5NobCiGfnx2eyxbm3OE9b3uDJE9Kct8k90vyqLa32DD+d9terO2PJLlLkr+ZmfOy2vs/aXuVJdY12t5hZ8nMzLlJ/jbJE9pequ1NsipkvyMbzzxJPpjkPsue/FSS2+5k2vN71zfjvVkVzX5U2wPbHp7krkmO3kIMAAAAAAAAAAAAAAAAAADYKxSwBgAAAAAAAAAAAAAAAADgguhnkpyR5B/XH87MmUl+NslvZFXs+YNJ/i2rQrtpe622Z7e91m7O/2dJXpPkTW3PSvKeJLdecjg2ya9mVaD2pKyKNp+SVQHnHbl/kosl+fcl71ckufrSdqsk72179jLn/5qZTyW5TFaFgE9PcnySU5P8fxsDz8w/JHlcklcu+Vw3yb12cd3/zcyckORuSR6b5PNJTkjym1n9W+WLJPnfSU5MclpWxYK3FZZ+S5Jjk5zc9gt7IJVHJrlPkrOy2peXbWh/QpIXtD2j7T1m5p+SPDjJ07Paw08keeDS9+JJnpbkC0lOTnKVJI/ZbCJ7ac//ZvnvqW0/sIkczu9cNmu797ztAVkVyP79mfnQzHx8medFS8HuZLVvp2d19i9O8rCZ+ejS9uis9vs9bc9M8g9JbrjJnB6e5KAl/pFJnn8+fZ+b5CbLmb96efa/siogfUaSI5K8ersjv2mH7/pmzMzXl/numNV9emaS+6/tBQAAAAAAAAAAAAAAAAAA7Dedmf2dAwAAAAAAAAAAAAAAAAAAfNtqe1BWxXKvPzOf3s/pwF7X9vAkR83MNfdzKgAAAAAAAAAAAAAAAAAAwPk4YH8nAAAAAAAAAAAAAAAAAADAd4a2l0/y6E10fcnMfHgPzPeQJNfZSbePzczzdyH2XZP8vyRN8odJ/jXJcVuNsz+1vXuSW+6k2ykz88f7Ip8Lgr1xZ9o+bRPd/n5mjtlszAvinBc2bW+Z5O6b6PqkmTl7b+cDAAAAAAAAAAAAAAAAAAC7QgFrAAAAAAAAAAAAAAAAAAD2lctmcwWsP5hktwtYJ7lPktvupM8bk2y5gHWSuyV5UVYFrP8pyb1mZnYhzv505yQP2EmfjyX5jilgnb1zZzZz589IsieLSe+POS9svjub28c/TaKANQAAAAAAAAAAAAAAAAAAF0j99vt38AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJyfi+zvBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANizFLAGAAAAAAAAAAAAAAAAAOA7Qtvj2t5uP84/ba+3v+Zn/2v7hLZH7e88dkfbq7Z9W9uz2v5R28e2/ev9nde+0JXntz297fv2dz4AAAAAAAAAAAAAAAAAALAzB+zvBAAAAAAAAAAAAAAAAAAAYE9re2SSz8zMb+/vXPjO1PbwJEfNzDX3cyp72kOSfCHJZWZm9ncyO9L2rVnt/54srv3DSX4yyTVn5kt7MC4AAAAAAAAAAAAAAAAAAOwVF9nfCQAAAAAAAAAAAAAAAAAAAFyQtL3o/s7hAuywJP9+QS5evRcdluQ4xasBAAAAAAAAAAAAAAAAAPh2oYA1AAAAAAAAAAAAAAAAAAAXKm0fkuSIJI9qe3bb164136Lth9t+se3L2l5ibdxd2n6w7Rlt39X25luc98i2z2r75rZntT2m7WE76Hvntv/S9sy2J7R9wlrb69v+6ob+H277PzeZx4+1/de1729u+/61729v+zPL5//T9pNLvv++Pkfb6y1r+GLbL7R92Wb3Yhn/1rZPbPvOJf6b2l5prf2n2x677Pdb2954i/GPbPvMtn+/nPM7216t7Z+2Pb3tR9t+71r/Gy/znLHM+9MbYv1l2ze0/VKSH2t7SNtXtv1820+3/bUt5HbpJH+f5JAlt7PbHrI0X6ztC5c9Obbt/1gbd37n8cC272j7h8v6Pt32jlvcs+9v++5lD05q+/S2F9vC+COTPCDffLdu1/YJbY9a63P/tse3PbXt49oe1/Z2S9sT2v5N26OWNf5r2xu0fUzbU5Z34fZrsS7b9rlLrp9t+6QuxcXPbz/aPjnJjyR5+pLn07ewxkPavqbtaW0/0fbBy/NfTPLXSW6zxPzdzcYEAAAAAAAAAAAAAAAAAID9RQFrAAAAAAAAAAAAAAAAAAAuVGbmr5K8OMkfzMxBM3PXteZ7JPmpJN+V5OZJHpgkS6Hj5yV5aJIrJnl2kte0vfgWpz8iyROTXCnJB5c8tudLSe6f5HJJ7pzkl7cVlU7ygiT33dax7fckuUaS128yh/ckuX7bK7U9MKt1HtL24LaXTPI/krx96fvJrAr9XjbJ7yY5qu3Vl7YnJnlTkssnuWaSv9jk/Ovuk+RBSa6S5GJJHrms6QZJXprk15NcOckbkrx2K8WUF/dI8ttZ7ffXkrw7yQeW769I8sfLfAcmee2ynqsk+dUkL257ww25PjnJwUnetfT/UFZ7/xNJfr3tHTaT1Mx8Kckdk5y43MGDZubEpfmnkxyd1dm/Jsl6ceXzO48kuXWSjy3r+4Mkz23bzeS0ODfJbyzjb7Os61c2O3hmHphvfbf+Yb297U2SPDOr9+DqyzqusSHMXZO8KKt79S9J3pjVv3u/RpLfy+rd2+bIJN9Icr0k35vk9kl+aa19u/sxM7+V1R1/+JLnwze7xqzO5jNJDkny80me0vbHZ+a5SR6W5N1LzMdvISYAAAAAAAAAAAAAAAAAAOwXClgDAAAAAAAAAAAAAAAAAPCd5M9n5sSZOS2rAsW3WJ4/JMmzZ+a9M3PuzLwgq4LIP7DF+K+fmbfNzNeS/FaS27Q9dGOnmXnrzPzrzJw3Mx/OqpjzbZfm1yS5QdvrL9/vl+RlM/P1zSQwM19J8v4kP5rkllkVYX5nkh9a1vPxmTl16fs3y36cNzMvS/LxJN+/hDonyWFJDpmZr87MO7a4F0ny/Jn5jyWnl+eb+33PrPbqzTNzTpI/THLJJD+4xfivmpl/npmvJnlVkq/OzAtn5twkL8uq6HGWdR+U5Gkz8/WZeUuS1yW591qsv5uZd87MeUm+O8mVZ+b3lv6fSvKcJPfaYn7b846ZecOS44uSfM+2hp2cR5IcPzPPWca+IKsi0Vfd7MTLXr1nZr4xM8dlVSz6tjsZthU/n+S1M/OO5b7+TpLZ0OftM/PGmflGkr/JqoD505Z7cHSSa7e9XNurJrlTkl+fmS/NzClJ/iTfega7tR8bLe/qDyV59HLnP5jkr7MqNg8AAAAAAAAAAAAAAAAAAN92FLAGAAAAAAAAAAAAAAAAAOA7yclrn7+cVVHjZFWo+RFtz9j2l+TQJIdsMf4J2z7MzNlJTttejLa3bvuPbT/f9otJHpbkSsu4r2ZVfPm+bS+SVZHlF20xj2OSHJ5VEetjkrw1q0LFt12+b8vj/m0/uLbmm23LI8mjkjTJ+9oe2/YXtphDsuP9PiTJ8dsalqLRJyS5xhbjf27t81e28319vhOWebY5fsN8J6x9PizJIRvuw2OzG8WR12zck0u0PSDZ6Xl8y9iZ+fLy8aBsUtsbtH1d25PbnpnkKRvi765D8q3vwJeTnLqhz8Yz+sJSgHrb92S1psOSHJjkpLX9eHaSq6yN36392EH+p83MWWvPNt4TAAAAAAAAAAAAAAAAAAD4tqGANQAAAAAAAAAAAAAAAAAAF0azxf4nJHnyzFxu7e9SM/PSLcY5dNuHtgcluUKSE7fT7yVJXpPk0Jm5bJJnZVUsepsXJDkiyU8k+fLMvHuLeWwsYH1MNhSwbntYkuckeXiSK87M5ZL827Y8ZubkmXnwzByS5KFJntn2elvMY0dOzKpAcZZcmtXefXYPxd/efIcuBcG3udaG+dbvzAlJPr3hPhw8M3fawpxbuoM7O4895C+TfDTJ9WfmMlkV5d6T8U9Kcs1tX9peMskVdzHWCUm+luRKa2dwmZm56SbHb/U3IFndkyu0PXjt2cZ7AgAAAAAAAAAAAAAAAAAA3zYUsAYAAAAAAAAAAAAAAAAA4MLoc0mus4X+z0nysLa37sql2955QyHbzbhT2x9ue7EkT0zynpk5YTv9Dk5y2sx8te33J7nPeuNSsPq8JH+U5EVbzCFJ3pXkhkm+P8n7ZubYrApG3zrJ25Y+l86qyO/nk6Ttg5LcbFuAtndvu60Y8elL3/N2IZfteXmSO7f9ibYHJnlEVsWK37WH4m/03iRfTvKotge2PTzJXZMcvYP+70tyVttHt71k24u2vVnbW21hzs8luWLby26y//mexx5ycJIzk5zd9kZJfnkPx39Fkru2/cHlHXhCdrFA9syclORNSf6o7WXaXqTtddvedpMhtvobkOVdfVeSp7a9RNubJ/nFJEdtJQ4AAAAAAAAAAAAAAAAAAFxQKGANAAAAAAAAAAAAAAAAAMCF0XOT3KTtGW1fvbPOM/NPSR6c5OlZFWv+RJIH7sK8L0ny+CSnJbllkvvuoN+vJPm9tmcl+Z2sCjpv9MIk351dKJ47M19K8oEkx87M15fH705y/MycsvT596wKZL87q2K/353knWthbpXkvW3PTvKaJP9rZj611Vx2kN/Hstqbv0jyhayKSd91Ldc9aol71yR3XOZ7ZpL7z8xHd9D/3CR3SXKLJJ9exvx1ks0Wo84S+6VJPrXcw0N20n9n57EnPDKrYulnZVW0/WV7MvhSKP1XsyoMflKSs5OcklVx8l1x/yQXS/LvWb2Xr0hy9U2O/bMkP9/29LZ/voU5753k2klOTPKqJI+fmX/YwngAAAAAAAAAAAAAAAAAALjA6Mzs7xwAAAAAAAAAAAAAAAAAAODbXtsjk3xmZn57D8W7f5KHzMwP74l4sK+1PSjJGUmuPzOf3s/pAAAAAAAAAAAAAAAAAADAd5wD9ncCAAAAAAAAAAAAAAAAAACwWW0vn+TRm+j6kpn58L6cb3fn2jDvpZL8SpJnrj27TpKHbGL4M2bmhD2Zz77KYV+f765o+5Ak19lJt4/NzPP3RT5J0vZpm+j29zNzzA7G77FzbXvXJP8vSZP8YZJ/TXLcJmLvNReEdwcAAAAAAAAAAAAAAAAAAPYHBawBAAAAAAAAAAAAAAAAAPh2ctlsrsDxB5PsiQLHW5lvj2h7hyR/m+Qf8q2Fsa+1yVxenWRvFeHd2zns6/PdFfdJctud9Hljkn1WwDqb27Mzkmy3gHX27LneLcmLsipg/U9J7jUzs4nYe9MF4d0BAAAAAAAAAAAAAAAAAIB9rvv/3/oCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwJ11kfycAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnnWBKWDd9oZtP9j2rLa/tr/z2ZG2R7R90/7OY1e0nbbX2995rGt71bZvW879j/Z3Pt+O2h7e9jP7ae5rtT277UWX729t+0vL5we2fcf+yAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4DvdAfs7gTWPSvKPM3OL/Z3I+ZmZFyd58Z6I1fatSY6amb/eE/H2lLbXTvLpJAfOzDf28nQPSfKFJJeZ/z97fxpl2Z2XB7rvPufEPGdEzikppdRUlIqqclGiWGZQ2xgw3G5sbKB9MY3c4MLTwn0bX2O7sa02boNvd0Nj48bYNAgzelrGmDbmcikEHspmVEGVVKUppVTOGZmRGfNwIvb9cIY6GYrMGPJIKYWeZy0t4gx7//57ePfJL8VbluWbPIsuK8vyTJLhu70OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuVrnbC+hwX5JP3e1FcOeKothNMfp9SZ67VXn1Lvf1ruP87E5RFId3+L2RoigG7nDWQFEUI91cV7f2cafzioaDO/zugaIoeu5w3lhRFH07/O5bdi6LougrimLsDmf1FEVxYIffPVgURXGH896y+2Q3+5C5bbeXuchcN/chc9tuL3ORuW7uQ+a23V7mInPd3IfMbbu9zEXmurkPmdt2e5mLzHVzHzK37fYyF5nr5j5kbtvtZS4y1819yNy228tcZK6b+5C5bbeXuchcN/chc9tuL3ORuW7uQ+a23V7mInPd3IfMbbu9zEXmurkPmdt2e5mLzHVzHzK37fYyF5nr5j5kbtvtZS4y1819yNy228tcZK6b+5C5bbeXuchcN/chc9tuL3ORuW7uQ+a23V7mInPd3IfMbbu9zEXmurkPmdt2e5mLzHVzHzK37fYyF5nr5j5kbtvtZS4y1819yNy228tcZK6b+5C5bbeXuchcN/chc9tuL3ORuW7uQ+a23V7mInPd3IfMbbu9zEXmurkPmdt2e5mLzHVzHzK37fYyF5nr5j5kbtvtZS4y1819yNy228tcZK6b+5C5bbeXuchcN/dxx5kry/KO/0vyVUl+J8lskteTPLXL7T+WZD3JcpL5JA8n6UvyvyU5k+RSkn+YZKD5/V9N8seaf//+JGWSr2q+/oNJnt3F7JPN7f9Uc+0zSf5Mkg8n+d0k15P8QMf3n0zyHzpel83vv9j87j9IUjQ/eyrJT2wxq5bkf9l0zD/Q/M6jSX4pybUkn0nydR3bf2WS55LMJTmX5C/t8jyXSR7c7po1z3nZXNd8ki9ovv/fJ3m+eY5+Mcl9m/b955vn4fQO1/N0krUkq805X9o8Z/8iyU801/YtSY4l+bnmOXkpyZ/u2MdTSf558/tzSX6vef/81SSXm8f2Zbs8T48n+Xjzel5I8gNJene5j2eSfFeS/9hc1/83yVTH5x9J8p+aMz6R5ImOz/5U8zzPJXklybd2fPZEkrNJviPJxSQ/3vHeX0syneTVJN/Q/P6H08hPtWMfX5PkE7s4lueT/D86XteSXEny+9JxT3cc97fcIivf37wes0l+K8kXdXw2kOTHmvfW80n+cpKzHZ8fS/Ivm3NPJ/m2Xax/MMk3pvGcea7j/bEk/1fzGp9L8rdb5ynJFzTX8kNJPrLLa/+R5nYz+Wx2nmzeCz+Q5EaSTyf5gx3b/GAa2f5/JznShWN7Jsl3J/n15vn+10kOdHw+13zvjyTp2cW8B5L8z8177Dua77XugY8mOd88n3+pY5uvb96D/3uSx3Yxq5LGM+Gnmus93pH5f5Hknzbf/+0k7+/Y7heax/1nkozvYt54kj/b3PYXOt5/NY3nyXPNa/qjSfqbnx1vnt+fbK61sot5jzXPyaUkX78p32/IcvPz72i+9z8nuX8Xs3qS/NE0nqNzHe8/ncZv6y81z+Wv5ubn+nNJfjnJn0wyuIt5R5r38nNJfrDj/TLJt6XxXJtO8r+2zllkTuZkLpE5mZM5mZO5ROZkTuYSmZM5mXsyMidzMidzMidzMidzMidzMidzMidzMidzMidzMidzMidzMidzMidzMidzMidzMidzMidzMidzMidzMidzMidzMidzMidzMpfInMzJXCJzMidz45E5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mbvDzJVl2bUC6yeSvK95831u8+L8kV3u45k0i2+br7+veeIPJBlJ8m+SfHfzs7+V5O83//5rSV5O8nc7Pvv+Xcw92TzB/zBJf5IvS6NU+meTHGrerJeTfEnz+0/mjQXWP98Mwr1pFOx+RUfotiywvsUxD6VR8Pun0igJ/mDzgn9O8/MLaZb+JplI8vt2eY7LfLbA+pbXbPM6m+99dRrl0e9pru07k/ynTfv+peb1GtjFmp5O8rc7Xj+VRqn1H2mubSDJryX5P5vX5wPNc/wHOr6/nOTLm+v6J2kUHP9PaQT4T2eHhdoda/hQGj9Itea5eD7J/7CH+/nlNMq0B5qvv6f52fEkV9MoJK8k+UPN1webn39VklNJiiRfkmSxda2b162e5O+mUfI+0PHe9zbf+5IkC0keaW7zXJI/3LG2f5Xk23dxLH8jyU92vP6qJM9vd0/njVn5k0kmm+f129Mo4G79KHxPGg/SiSQn0iiPP9v8rJJG4fXfSNKbxg/qK0m+fJt1f0GSf5zGA/KXknxDOu7N5nn4oTRydyiNH7Fv7fj8/ub99Uo+W6p99BazjjY/f7553f9mOn5smueinuT/lcZ9+fVp/KPmQMcxfmkaheQ30nj2/dHc4h8aOzi2Z9Io5X6seXz/Mjc/i8bT+LH/eBrZ/94k77vFrMEk/12SX0njPv3BJJ+/xXPtp5uz3pdGRr+04zuPpfHDdT7JbyT5c0kmbjHvgTSe468174NvT3J4i2fEH2+ey7+URuZ7mp/3pPH8+FfNc/lTaWTsDf/QaJ73L2uu/UZzm6/uPO9p/OPhk0nuSeP59h9z8zPrSHMNv9dc899K8sAtjm2ieey/0TwX/2uS93Z8/kRuk+Xmdz7SvAZXm9fkG3OLf2g0r8X3pvEb9vEk35qOf+Cl8fydS/LFzXnfn5szO5hGbn8pjXvtH6X5D/QtZvUk+Zo0fqtvpHEv/8HO8968T36leR7vTfJCbv4NlDmZS2RO5mTuqciczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczMmczO0xc2+Yv5Mv7fa/JP9Hku/b5TbPtA4qjeLehSSnNoX3dPPvP5jkd5t//7sk35LkPzdf/2qSr9nF3JPNE3y8472rabajN1//yzQLjLN1gfUXdrz+Z0n+SkfofmKLWbXNx9x8/fVJ/v2m9f1Qkr/Z/PtM82Yc3eN1KdMssL7dNdu8zuZ7v5DkmzteV9IoVr6vY99/YA9rejpvLLD+tY7X9yRZTzLS8d53J3m64/u/1PHZf51kPkm1+Xqkubbx3a6tY5//Q5J/tYf7+Ts7Xv+5JP+u+fd3JPnxTd//xSTfdIt9/WySv9j8+4kkq2kWP3e8V08ytOk+/Osd836y+feB5nXb0QOiuc2DaTzwBpuvfzLJ39juns6mrGyx35kk72/+/Uo6CqnTyPTZ5t+fn+TMpm3/apIfvcV+vy7Jp5N8Jo2C+xNbfOdwkpXc/A+AP5HkV7b4bpHGj8qPNNf880nubX52b/P1TPPzL05SbLGPJ9P48So63vv1JN+4xXdHkvz3aRS3X07yXbs5to7r8D0drz+ned9Ut/juI0n+TpLXk/xmOnKc5IeTXEvyb5uz+7bYvnUPPNrx3v8nyf+1xXeraRSg/7Mk15P8TJrPsyTvb677cpK/l2Zp+xb7eCrN533zdSXJhSRftMV3p5J8W5LfTuP5+Rc6PvsLzfd+u/mdqVvMezXJn+l4/ZVJXr7Fdz/UXPvl5rG07u/R5rFebx77V97iWjyR22R503f7mtfk3zav0Q93fPYHmtfy9ea1ffgW6306yc90vB5O43l7zxbfvad5z32meQ9+Xcdn39U85l9L494ducW8MslXdLz+c0l+WeZkTuZkTuZkTuZkTuZkTuZkTuZkTuZkTuZkTuZkTuZkTuZkTuZkTuZkTuZkTuZkTuZkTuZkTuZkTuZkLjInczKXyFwiczInc09E5hKZkzmZS2RO5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mQukTmZk7lE5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mRO5mRul5m71X+VdEFRFJ9fFMWvFEVxpSiKG2m0vE/dwS4PptEC/ltFUVwviuJ6GkXVB5uffzzJw0VRHE7ygST/JMk9RVFMJXk8jRO6W5c6/l7a4vXwbba92PH34jbfvZ37knx+65ibx/0NabS9J8kfSyMErxVF8atFUXzBHufs5Zrdl+T7O9Z1LY0b7njHd17f63o26dzPsSTXyrKc63jvtU1zN1+r6bIs1zteJ7u4JkVRPFwUxc8XRXGxKIrZNB4Ge7mfb3Vf3Jfkazdd5y9McrQ5/w8XRfGfi6K41vzsKzfNv1KW5fKmWTNlWS50vH4tjXOXJD+R5L8uimIojYffvy/L8sJOD6Isy5eSPN/cx2CS/ybJT+10+5aiKP5SURTPF0Vxo3lcY/nscR3Lzde98+/7khzbdL7+Whol1Fs5kcb98WyST+Tm69C5z54kFzr2+UNJDm3+Ytl4uj7X3NfZJO9NMtT8eKj5+mzz8+eb39/KuU2fdV6jznlzSX63uf6eNP6xsZtja+k8h68197XVffxac1+fTKOsvPMcPJbGP4KeTfK7ZVmu7GLeVse2nuT3mvOuNfff0/x4PMmjSV5qfv7STmaVZbmRxvl/w7wkV/PZczmR5P6Oz+5vvvdsc97VnczLLY6t6cWOtT+axjEljWN8LI1jfjbJJzueUZvdLsttzWvROrbV5v5bDqVxLT/ZXM+ZW8xKbj6X8801bnV8F5rzPpHGPXii47NH0jjGZ9O4T+besPUW83LrY5M5mZM5mXs2Mtfap8zJnMzJnMztYF5kTuZ2MC8yJ3M7PzaZk7mtyJzMyZzMyZzMyZzMPRuZa+1T5mRO5mRO5nYwLzInczuYF5mTuZ0fm8zJ3FZkTuZkTuZkTuZkTuaejcy19ilzMidzMidzO5gXmZO5HcyLzMnczo9N5mRuKzInczInczInczInc89G5lr7lDmZkzmZk7kdzIvMydwO5kXmZG7nxyZzMrcVmZM5mZM5mZM5mZO5ZyNzrX3KnMzJnMzJ3A7mReZkbgfzInMyt/NjkzmZ24rMyZzMyZzMyZzMydyzkbnWPmVO5mRO5mRuB/Oyt8xtqXK7D3fhp5L8XBoN3mNJ/mEa5cZ7NZ1G8fB7y7Icb/43VpblcJKUZbmY5LeS/MU0borVJP8pyf+YRkv69B3M7qaFNIq4W45s+nzzQ+/1JL/acczjZVkOl2X5Z5OkLMvfKMvyq9O4UX82jZb2vbrdNdvqYfx6km/dtLaBsiz/022OZ68693M+yYGiKEY63rs3ybkuzdrKD6bRNv9QWZajaZQl38n9vNnrSX5807kcKsvye4qi6EvyL5P8b0kOl2U5nuTfbpq/1XmeaBZUt9ybxrlLWZbn0ih9/5ok35jkx/ew5p9O8ieSfHWS58pGqfWOFUXxRUn+choF2hPN47qRzx7Xhdz8cLyn4+/Xk5zedL5GyrL8yq1mlWX5vWk8bH85yf+U5GxRFN9XFMUHN+1zJclUxz5Hy7J8b8ea+4qi+ONFUfybNH6kPpTk25I8UJbl881Zzyd5oPn+h5K8WBTFzzW369u0tONFUXRex/Y1as47URTFXymK4rkkP5PkSpL3l2X5dbs8tq3O4b1J1tJ4tqZo+KKiKP5xcw3fnOSfJDlSluXPdMz7SJL/KkktyceKovj1oij+QlEUkzuY13lsw0VRPFkUxceS/HbzGL6+LMvHyrK82pz1q2ncA9+T5KuSnCmK4qeKoviKoiiqt5pVFEWluV3nvIeKoviuJKeTfH8a/4B6oCzLb+84tm9PciqNH/y/n+R0URTfVRTFQ7s8tmqzdP6n0/hHw1cl+e4kJ5rHlLIsr5Zl+ViSr2+u9beLovhY85wMb5p1yyw35002r8GvJ/lYkmqS/6p5rVrH9jNp/N78eBrX9nxRFP+4KIovvN2xNddyYNO8DxZF8X1p/KPiryX5pSTHm/dia97XJflAGvfXPy2K4lNFUXxHURTHbzdvi2OTOZnbybHJnMzd6thkTuZkTuZkTuZkTuZkTuZkTuZkTuZk7rOzZE7mbnVsMidzMidzMidzMidzMidzMidzMidzMvfZWTInc7c6NpmTOZmTOZmTOZmTOZmTOZmTOZmTOZn77CyZk7lbHZvMyZzMyZzMyZzMyZzMyZzMyZzMyZzMfXaWzMncrY5N5mRO5mRO5mRO5mRO5mRO5mRO5mRO5j47S+Zk7lbHJnMyJ3MyJ3MyJ3MyJ3MyJ3MyJ3MyJ3OfnSVzMnerY5M5mZM5mZM5mdtV5m6pLMs7/i/J5STf1Pz78ebrn9jlPp5J8i0dr78/jYLmQ83Xx5N8ecfnfyfJbJK/3nz955uv/8Eu555MUiapdbx3NskTHa9/Isl3Nv9+Msl/6PisTPJgx+unk/zt5t9/qHlx700yluRfd85K44H1dzq2HUmjnfwb02g270ny4STvSdKb5BuSjDW/+81JXtvlsbbXertrlkbp9nqShzu2/aNphP69zddjSb72VudhF2tqn6/m66c23ztJ/n2SH0jSn+Rzk1xK8qVbfT/JlyZ5teN1rbm2E7tY068n+RtJiiSPJvlM5zXf4/3cvm/SCPPFJF+exoOoP8kTaTzkRprn/kua8/9wksWOe+qJJGc3zXoiST2N0uveJF+URnn6ox3f+YY0HuizSQb3cJ2ONtfxa0n+4q3y03ncm475K9N4aB1prvFvNI+zdR3/bpJfSTKRRtafbR1n8xz9dpLvSDLQfP1Ykg93HH95m7U/ksaPy9kkv9zx/r9O4zkzmqSSxg/blzQ/+9wk15r33jcnGdnheRppfv8/NLf/3I5zUU/yF9PI9dc2r8Vkx318I8mPJvniJMUO593q2J5pvvc5aeT5nyf5qY7PX0nyQhr/INpRNprn/aua+5pL8s2b7oGfbM56bxrPky9rfv4VzWP9hTR+zPt2OG+qeb6ebd47rd+Cp9L4h9nXpJHv/zHJq0l6mp//SBrP3b+f5Pft4h7/UHOb6SQ/0vH+q2lk50QaP/T/Ic3ndpJDaZSv/05zrVM7nNXXPBe/0Dw3X7GTLDfvrbnmNfiqJNUdzrunea1fTPJyx/tPN+d/YXPe9yX5jx2ff6x5H313On4PtplVpPH8+tHmPf1Ux2dlGv8Qn2iu6dNJPipzMheZkzmZkzmZkzmZS2RO5mQukTmZkzmZkzmZkzmZk7mnInMyJ3MyJ3OJzMmczD0VmZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mUtkTuZkLpE5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mZM5mbvDzLX3vZsv32bxfzyN4uW5JD+fRtnwnRZY96dRUv1K82Q/n+TbOj7/8uaJ+ZLm68ear79+l3NP5k0qsG6+/gdJrid5Kcmf7pyV5AvSeKDMJPl7zfceSfJ/J7mS5GrzZvpA80b7d83vzib5jSRfuMtjba91u2uW5G8113A9yUea731jPluC/HpuDvxN52EXa9p8vp7afO+k8RD5+eaN/nKSP3Or76c7BdZfnEbI5tMI1t/qvOZ7vJ833zefn+RXm8d0pXnN721+9ufTKOm+nuTH0yg6367A+mwaD6vpJGeSfOOm7ww2r9uP3UHOfzmNB+2RW+Wn87g7jzmNH8Ifaa7hQpK/nMaPRKvAeqh5rNfTyPp35uaH7rEkP51G8fdMkv/cse03puMBfJv1V5J8QcfrsSQ/2Dx3N9L4Qfpvm58d2cv9vGneg61z1TwX/zGNnN1II/df1vHdDyQZuoNZm4/tmTR+gH69ec7/TTp+aLPLZ8cW8w4k+ZxN98BH0/hHx8Ukf7nju/cnOXaH896fZLj591NJ/kWSf5rG8+t30vGPliSPJ+m9g1m9SR7veP1qkr+a5Lnm/fljaZbAJxlO8v47PLZjSe5v/v1EbpPlNP5xeuAO531hx99PJ/mHSX4pjefdr7XW0vz8C5JU7mDWUJIPdLwuk3xbGr/rV5P872n+g0zmZK7jtcztfZbMbXHe9zhP5kqZ28EsmdvivO9xnsyVMreDWTK3xXnf4zyZK2VuB7Nkbovzvsd5MlfK3A5mydwW532P82SulLkdzJK5Lc77HufJXClzO5glc1uc9z3Ok7lS5nYwS+a2OO97nCdzpcztYJbMbXHe9zhP5kqZ28EsmdvivO9xnsyVMreDWTK3xXnf4zyZK2VuB7Nkbovzvsd5MlfK3A5mydwW532P82SulLkdzJK5Lc77HufJXClzO5glc1uc9z3Ok7lS5nYwS+a2OO97nCdzpcztYJbMbXHe9zhP5kqZ28EsmdvivO9xnsyVMreDWTK3xXnf4zyZK2VuB7Nkbovzvsd5MlfK3A5mydwW532P82SulLkdzJK5Lc77HufJXClzO5glc1uc9z3Ok7lS5nYwS+a2OO97nCdzpcztYJbMbXHe9zhP5kqZ28EsmdvivO9xnsyVMreDWTK3xXnf4zyZK2VuB7Nkbovzvsd5MlfK3A5mydwW532P82SulLkdzJK5Lc77HufJXClzO5glc1uc9z3Ok7lS5nYwS+a2OO97nCdzpcztYNZblrmiuRNgnyuK4uUk31qW5f/vbq9lO0VR/Nk0yqS/ZAff/eEk/7wsy19881e2N0VRPJlGsfcXvkXznkmj2P2H34JZJ5OcTtJTlmX9LZj3VBo/en/yzZ7VnPdqGtfuTc9NURRPpHHdTrzZs5rznk5ytizL73yL5pVJHirL8qW3YNaTkbluzXsqMteteU9H5ro175nIXLfmvRqZ69Y8mevOrJORuW7NeiIy161ZT0bmujXvqchct+Y9HZnr1rxnInPdmvdqZK5b82SuO7NORua6NeuJyFy3Zj0ZmevWvKcic92a93RkrlvznonMdWveq5G5bs2Tue7MOhmZ69asJyJz3Zr1ZGSuW/Oeisx1a97TkbluzXsmMtetea9G5ro1T+a6M+tkZK5bs56IzHVr1pORuW7Neyoy1615T0fmujXvmchct+a9Gpnr1jyZ686sk5G5bs16IjLXrVlPRua6Ne+pyFy35j0dmevWvGcic92a92pkrlvzZK47s05G5ro164nIXLdmPRmZ69a8pyJz3Zr3dGSuW/Oeicx1a96rkbluzZO57sw6GZnr1qwnInPdmvVkZK5b856KzHVr3tORuW7NeyYy1615r0bmujVP5roz62RkrluznojMdWvWk5G5bs17KjLXrXlPR+a6Ne+ZyFy35r0amevWPJnrzqyTkbluzXoiMtetWU9G5ro176nIXLfmPR2Z69a8ZyJz3Zr3amSuW/NkrjuzTkbmujXrichct2Y9GZnr1rynInPdmvd0ZK5b856JzHVr3quRuW7Nk7nuzDoZmevWrCcic3tS22bwRJLv2MF+fqosy9/dYvsPJfnaHWz/t8uynN/B93asKIqvTfKhbb52uSzL7+3m3LdaURRfmuRLt/naWlmWf/2tWE+SFEXxQJKP7uCr/6Asy9ff7PW0FEXxPTv42i+UZfmrt9j+bXlcO1EUxR9LUib5WMd7H03ywDabfqYsyx99M9fWXMvR5lo+nuShJN+e5Ad2sm1Zlt/yJi4NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAd6bYF1knGsrMC62eTvKHAOsn7drj9/5GkqwXWSb4qyTdt853PJHlHF1gn+cJsf45XkrxlBdZJ7s3OrvvPJnkri553sqbrSbYssM7b97huqyiKZ5J8TpJvLMtyo+Oj/2eSL9lm819M8qYXWCfpTfJDSe5P4xr8TJL/8y2YCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwLxVlWd7tNQAAAAAAAAAAAAAAAAAATUVRfEWS709STfLDZVl+z11eEgAAAAAAAAAAAAAAAAAAAADvQAqsAQAAAAAAAAAAAAAAAOBtoiiKapIXkvyhJGeT/EaSP1GW5XN3dWEAAAAAAAAAAAAAAAAAAAAAvONU7vYCAAAAAAAAAAAAAAAAAIC2x5O8VJblK2VZrib5mSRffZfXBAAAAAAAAAAAAAAAAAAAAMA7UO1uLwAAAAAAAAAAAAAAAAAAaDue5PWO12eTfP7tNiiKonxTVwQAAEnKsizu9hoAAAAAAAAAAAAAAAAAgN1RYA0AAAAAAAAAAAAAAAAA7zBFUXw0yUfv9joAAAAAAAAAAAAAAAAAAAAAePtSYA0AAAAAAAAAAAAAAAAAbx/nktzT8fpE872blGX5j5L8oyQpiqJ8a5YGAAAAAAAAAAAAAAAAAAAAwDtJ5W4vAAAAAAAAAAAAAAAAAABo+40kDxVFcX9RFL1J/tskP3eX1wQAAAAAAAAAAAAAAAAAAADAO1Dtbi8AAAAAAAAAAAAAAAAAAGgoy7JeFMVfSPKLSapJfqQsy0/d5WUBAAAAAAAAAAAAAAAAAAAA8A5UlGV5t9cAAAAAAAAAAAAAAAAAAOxRURT+h4IAALzpyrIs7vYaAAAAAAAAAAAAAAAAAIDdqdztBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBdCqwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2GQXWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+4wCawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgH1GgTUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA+o8AaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgn1FgDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsM8osAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANhnFFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsMwqsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9hkF1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPuMAmsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB9RoE1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAPqPAGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYJ9RYA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALDPKLAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYZxRYAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7DMKrAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPYZBdYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7jAJrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfUaBNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwD6jwBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCfUWANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwzyiwBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2GcUWAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOwzCqwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2GQXWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+4wCawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgH1GgTUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA+o8AaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgn1FgDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsM8osAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANhnFFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsMwqsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9hkF1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPuMAmsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB9RoE1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAPqPAGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYJ9RYA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALDPKLAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYZxRYAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7DMKrAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPYZBdYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7jAJrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfUaBNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwD6jwBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCfUWANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwzyiwBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2GcUWAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOwzCqwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2GQXWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+4wCawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgH1GgTUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA+o8AaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgn1FgDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsM8osAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANhnFFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsMwqsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9hkF1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPuMAmsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB9RoE1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAPqPAGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYJ9RYA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALDPKLAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYZxRYAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7DMKrAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPYZBdYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7jAJrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfUaBNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwD6jwBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCfUWANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwzyiwBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2GcUWAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOwzCqwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2GQXWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+4wCawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgH1GgTUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA+o8AaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgn1FgDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsM8osAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANhnFFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsMwqsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9hkF1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPuMAmsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB9RoE1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAPqPAGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYJ9RYA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALDPKLAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYZxRYAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7DMKrAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPYZBdYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7jAJrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAfUaBNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwD6jwBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCfUWANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwzyiwBgAAAAAAAAAAAAAAAIA3SVEUP1IUxeWiKD7Z8d6Boih+qSiKF5v/d6L5flEUxd8riuKloih+tyiK33f3Vg4AAAAAAAAAAAAAAAAAAADAO50CawAAAAAAAAAAAAAAAAB48zyd5Cs2vfdXkvxyWZYPJfnl5usk+cNJHmr+99EkP/gWrREAAAAAAAAAAAAAAAAAAACAfUiBNQAAAAAAAAAAAAAAAAC8Scqy/LUk1za9/dVJfqz5948l+SMd7/+TsuE/JxkviuLoW7JQAAAAAAAAAAAAAAAAAAAAAPYdBdYAAAAAAAAAAAAAAAAA8NY6XJblhebfF5Mcbv59PMnrHd8723wPAAAAAAAAAAAAAAAAAAAAAHatdrcXAAAAAAAAAAAAAAAAAADvVmVZlkVRlLvdriiKjyb56JuwJAAAAAAAAAAAAAAAAAAAAAD2icrdXgAAAAAAAAAAAAAAAAAAvMtcKoriaJI0/+/l5vvnktzT8b0TzffeoCzLf1SW5eeVZfl5b+pKAQAAAAAAAAAAAAAAAAAAAHjHUmANAAAAAAAAAAAAAAAAAG+tn0vyTc2/vynJv+54/78rGj6S5EZZlhfuxgIBAAAAAAAAAAAAAAAAAAAAeOcryrK822sAAAAAAAAAAAAAAAAAgH2pKIqfTvJEkqkkl5L8zSQ/m+SfJbk3yWtJvq4sy2tFURRJfiDJVyRZTPKnyrL8zR3M8D8UBADgTVeWZXG31wAAAAAAAAAAAAAAAAAA7I4CawAAAAAAAAAAAAAAAAB4B1NgDQDAW0GBNQAAAAAAAAAAAAAAAAC881Tu9gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoLgXWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+4wCawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgH1GgTUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA+o8AaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgn1FgDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsM8osAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANhnFFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsMwqsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9hkF1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPuMAmsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB9pna3FwAAAAAAAAAAAAAAAAAAwDtbURQpiuJuL2PfaJ3Lsizv8kr2l9b5LIrCuWVLWz3HyrJ8w/tv1/unc53dWGPns2g3+978DNvq/O31N2Mnx7WT63i7/Wz3DO58hmze51bHfqtnz1bPotZ7uz0/rW22u183r/ftei8DAAAAAAAAAAAAAAAAAN1T+B8UAgAAAAAAAAAAAAAAAMA7V1EU/oeC3HWVSuUNJdY7LWHeqgh0u2LRt+J/H7tV0WinrT7rZmFst/ZHw3alsZDcuvi487O3+73zZjyPdnsOdvL8vF1B8+2Kr3dqu5l3WmC903XebuZ2z6K9lHzvpHC99fnGxkY2NjZ2u/+9NY8DAAAAAAAAAAAAAAAAAHeNAmsAAAAAAAAAAAAAAAAAeAdTYM3bQbVa3bK8Otm+AHTzd7YrPr3dPm81504KsW9VILpVcWk3/3e77/SS5e2uIW8v++l67adj2W928lzb6jvdfB52a19b/Vbd7vfu7fY8L4oi6+vrCqwBAAAAAAAAAAAAAAAA4F2gcrcXAAAAAAAAAAAAAAAAAADA/lUUxU0lspVKpV3muZMS6Nb33qzyz+32u9Xszet+M9a2k32+Xct5325FrUB33OkzZyfPhq2+83Z8ptzqd2En3307eDN/VwEAAAAAAAAAAAAAAACAt5fa3V4AAAAAAAAAAAAAAAAAAAD7363KnsuyfEMpaqvguhszu1XQuZOi6zfLrY7jnVA+ul3hbecxvF0Lud8N9uO534/H1Kmbz7edeic8c3biVr9H7ybv5mMHAAAAAAAAAAAAAAAAgHebyt1eAAAAAAAAAAAAAAAAAAAA+8tuy563+v6tymffboXHSkDfqCiK9n/wVns33Ht3o7x6vyjL8rbn7p10/7xT1gkAAAAAAAAAAAAAAAAA3F21u70AAAAAAAAAAAAAAAAAAADeuW5XNL3VZ1sVUG9VaL2XYs5b7Y+33tutaJzba10v12r33up7XXl1d2xXYr3dd7bb51txL9zJfbBdkTcAAAAAAAAAAAAAAAAAsH8osAYAAAAAAAAAAAAAAAAA4C2zVfnqrQpZO0tEd1oG+maXhu6kPLabJabbbf92L4rebk1vxzW/m+21PH6/qVarqdVqWV9fz/r6eoqiSKVSSVmWWV9fv6trUzr85tsP5c57LeEGAAAAAAAAAAAAAAAAAPYfBdYAAAAAAAAAAAAAAAAAAOzZboqlq9VqiqJIvV5vF+W2yjX3Wpq7uVB6Y2Nj27V1vr/Tcs9uloHebv7m43mzy0ff7JLTbuz/Tu+Rd7Le3t6UZZm1tbW37Dy83UvR92qnx1UURYaHh3P06NHU6/Vcvnw5vb29GR0dzdLSUmZmZrK8vPxWLPld7W4WMO91Zjfzsvm3AAAAAAAAAAAAAAAAAABgrxRYAwAAAAAAAAAAAAAAAADwpugs3B0YGMjRo0eTJOfOncvKysqe97Xdd271+k4KQXez3XYlprfb127Xd6eFqa0i8W5v0/q8myWse1nrO1l/f38eeeSRLC8v59VXX22XJr8Z52Evpe5vd7VaLb29vUmSlZWV1Ov1HW1XlmUWFxezvLychx56KNVqNTMzM5mYmMjU1FSS5MqVK1lbW2tv8266L7vhrS5nrlQqKctyRzP3y/2/X44DAAAAAAAAAAAAAAAAALhzlbu9AAAAAAAAAAAAAAAAAAAA9odblbhWKpUMDQ3lkUceyUMPPZRarZaiKFKpVNrbdJZt7rRodPN2O/1ua/93WvBZqVQyPDycarX6hs/utNC2KIo3vRR3LzM6z1m1Wk1/f39qtdpN36nVaunv70+lUsnGxoYi1T0oiiKjo6P5vM/7vDz88MOpVqvt67WTa/ZW3D93qlqtto+r2yqVSo4cOZKPfOQjed/73pfBwcFdzVlbW8v09HSWl5ezvLyc2dnZzM3Npa+vL729ve+oe3o3981b5a08f0NDQzl8+HCGhoZSqdz6/71CN34TWt5u57tTa23vpHsYAAAAAAAAAAAAAAAAALgzte2/AgAAAAAAAAAAAAAAAAAAW7tdUWfn+9VqNT09Pe3y6uHh4ZRlmfn5+VsWaZZl+YZ9d753tws4e3p6cujQoVy4cCFLS0vt94uiSG9vbzY2NlKv1/e05q2OvVsqlUr6+/uTpL3G9fX1bdfW+XmtVsuDDz6Ye+65J+fPn89nPvOZ1Ov1JMnAwECGhoYyPT2djY2Nm/bROjcDAwOpVqtZXV3N4uLibYuu365FsG+mSqWSkZGRjI+PZ2Zmpn1ud6JWq2Vqaiq1Wi0XL17c1bbJW3O+q9VqTpw4kXq9nqtXr2Z5ebmr+6/Vajlw4EAGBwczPz/fPqbdlli/+OKLuXbtWur1ejY2NnLjxo3Mzs7edE53us+38rlVqVQyMDCQkZGRDA0NpVarZWVlJbOzs5mfn8/q6uqbvoa9qlQq7XO0l3O1+TwfPnw4jz76aD75yU/e9Jzu1M1rcqf5ebPzd7d/NwEAAAAAAAAAAAAAAACAt54CawAAAAAAAAAAAAAAAAAAuq5VbF0URbu8uizLVKvVDA0NZXR0NOvr65mfn9/RvjpLN9/McufOma1Zt/q8t7c3Bw4cyNzcXJaXl7OxsZFKpZLR0dGcPHkyc3NzuXDhwk3lvJ3r3klh9J2W3ra2K4oilUolQ0NDOXXqVA4fPtwul56dnc25c+cyPT192yLh1lpqtVqOHDmS++67LxcuXMiBAwcyPDycGzduJEnm5+ezsLDwhvLqSqWSAwcO5MSJExkfH8/6+noqlUquXr2a06dPZ2FhYU/HeLd1XpvWPX+nJbG9vb0ZGRlJvV7f8lzeSlEUGRgYyKFDh1KpVDI9Pb3rAuu3QrVaTa1Wy8jISJaXl7taYN3K4MjISJLs+fhXVlZy8eLF9npb53JpaWnXz5++vr6cPHky9Xo9r7zyyq7vj83f3zy/854bGBjIAw88kHvuuaddBl2r1dLT05PFxcWcPXs2r732Wubm5na1hrdCtVpt/zYsLCxkfX19x9v29PTk2LFjGRgYyCuvvJK1tbVUKpUkjXuip6cn1Wq1naXdXIOenp6Mjo5mcXHxliXYLXea/dZzfzf72fz91utb/X6UZanIGgAAAAAAAAAAAAAAAADeRRRYAwAAAAAAAAAAAAAAAADQFZ2Fma3C5LIsU6lUUqlUsrGxkbW1tfT19bXLeavV6rblrLd6783UOpbbFUgPDAykt7c3PT09qdVq7WLUvr6+VKvVrq6jG/sZHh7Oww8/nL6+vvzO7/xOVldXMzQ0lIGBgdRqtfT392dtbe22pbFFUaS/vz/Dw8M5d+5crl69moGBgYyOjrYLrDeXo7bugZGRkYyPj2d+fj6nT5/O0tJS+vr60t/fn56envY98k53p8WwrfuuVqtlfn4+V65c2VWBdX9/f2q1WlZXV9+2JbVlWWZlZSUjIyPp7+/v6rWvVqsZGxvLoUOHMjAwkIsXL97xvtfX13P9+vXbfqcoilSr1fa9vLy8nPX19RRFkampqTz00EM5e/ZsKpXKroqZbzdv8/Xt6+vL4cOH09PTk09+8pO5ceNGu8C7tbYkWVtbu+P5b4ZarZahoaH2/TA/P3/L73Yef+u+n5ycTKVSaWeotZ/FxcVUq9VUq9Wsrq7etI/tVCqVHDp0KA8//HDOnDmzpwLynahUKhkcHExRFFlYWNjVjDspuwYAAAAAAAAAAAAAAAAA9j8F1gAAAAAAAAAAAAAAAAAA3LHOItDW3xsbG+2yzLIss7GxkZWVlfT396evry/Ly8s3bXOrUs3blUhvt57ObTvLTneyr82F3J2q1WpGRkYyNDSUkydP5ujRo1lYWMi1a9fS29ub9fX1VCqVVKvVXRWGbvXd1jp2WzraWcBdFEUmJibS29ub1157LdPT09nY2MiNGzduKnrdrui3KIoMDAykr68vN27cSG9vb4qiaBfyFkWRoaGhJMnS0lL7/d7e3kxMTKS/vz/T09OZm5vLxsZGVldXMzc3115npVJJb29vKpVKVldXs76+/q4rW21d71ZGZmdnd7xtURTp7e1NkiwvL++puPmtKLjd2NhItVpNX19fhoaG0tfXl6Wlpa7su1qtZmJiIkeOHMnq6mr7v25qFSaPjo5maGgovb29GRoayqFDhzI+Pp6LFy/m2WefzczMTHp6enL06NH09/dndnZ2T+d2q6LlzSXxSTI0NJTh4eHMzs5menr6Dc/Y1nc7n4XdcqfPueSz+e/t7c38/Pxt97n5+Fu/MZ2/O+vr6+3nTG9vb3p6erK8vLzlubvVulp5rNfrqdVqqVar7VLwrY5r8z53euy9vb05cuRIKpVKXn/99Tesc6f72+o3a/N1bv02vNuerQAAAAAAAAAAAAAAAADwbqXAGgAAAAAAAAAAAAAAAACAPWmVYG4ux2wVfm4u0KxUKrl+/Xrq9XoqlUrW1tZSrVbbJbudZded2/X09KSnpyeVSiX1ej1ra2u3LBBtqVQqGRgYyODgYJJGmXJru9aM1pzbFWe3SqiTtMtRW8c3NTWV48eP5/Tp07lx40ampqbS19fXLmRulZ127q+vry+Dg4PZ2NjIwsLCjot191Je3dfXl7GxsQwMDGRpaSlDQ0NZXFzM4uJi+xy19r2bouh6vZ65ubksLCxkcnIySbK2tpYkmZyczGOPPZaZmZm89NJLWVhYSJIMDAxkdHS0fQ23mjU6OppTp061S1zPnj2bl19+OfPz87s+/lqtlpGRkfb1aK2jUqmkp6cnw8PDWV1dzcLCwi1LngcHBzMyMpL19fXMzs7edK06i2r3UgRbqVTS39+f/v7+bGxsZHFxsb3/1j1/8ODBrK6uZnFxccf7b933vb297SLfSqXS/q9VqL66upp6vZ6iKDIyMpIjR45kdHQ0IyMj2djYyGuvvZaLFy/eVIB8O9VqtX2Ni6LIzMxM+z7byvr6erugvFVYvF2BdasEvVWe3ipB36yVvcXFxVy5ciXT09PbPi/2ovWMq9VqOXjwYO69996sr6/n9OnTee211zI/P5+kcS9OTExkbm4uN27caK+5r68vSSNPraL3O1WWZfr6+trP1lYx/eZ1t7S+U5blG85R697Z/Ly83ezdaJ27SqWS9fX19jkYHBxsl3339PS07+ONjY1bnqeiKLK+vp7+/v52BlZXV1OWZbsUu/NZfKs1b/X709LT09M+J3d6DjqfGZ3/t1qtZn19PbVabcfPlb2UULd+xwAAAAAAAAAAAAAAAACAdwcF1gAAAAAAAAAAAAAAAAAA7MmtCjY7369Wq+np6Ul/f3+Gh4dz+fLlVKvV9Pf3Z319PUNDQxkeHk6tVsu1a9cyNzd3U0np8PBw7r///hw7diy1Wi0zMzM5e/ZsLl26lJWVlVuWD/f39+fkyZM5dOhQ+vv7U61WU6/X29u3imRbBadJo4S5s/S0Vew7OTmZarWaa9eu5fz585mbm0ulUsn4+HiWl5fz2muv5fLlyymKIuPj41laWkqlUkmtVmsXbyfJgQMHcu+992ZycjLr6+v59Kc/nYsXL7aLhIuiSG9vb2q1WtbW1rK2traj4tjNKpVKJicnc/To0YyMjLRLhZeWljIzM5PBwcEcPXo0/f39WVlZyfXr13Pt2rUsLy/f8ny2tIpuWwWx4+PjmZuby9zcXJJGCfXQ0FDOnz9/U1F1T09Pent7U6/Xs7Gx0S7WbZ3rsbGxnDp1Kqurq/mt3/qtDAwM5MSJExkeHs7i4uKuCn6r1WoOHjyY++67LxcvXszVq1fbRbRHjhzJBz7wgRw+fDhnzpzJc889lytXrryhvLdWq+Xee+/NkSNHcuXKlSwtLWV1dTVFUWR4eDj33HNP1tfXc+bMmSwtLbX33ypkr1Qq7ft6cXGxfa9Wq9UcPXo0J06cyPj4eIqiyOzsbC5evJgLFy5kcXExlUolQ0NDOXHiRBYWFtr3xk7ug9Y9lDRKag8ePJiJiYkMDQ21c9ff35+FhYW88MILWV5ezvvf//6sr6/n9ddfz7Vr13Ls2LHcf//9qdfruXz58rYl67VaLffdd18ef/zxzM/P58KFC1lZWWnfT61C7lYGW/fF4uLiTWtaW1vLxsZGVldXs7Gx0c7P2tpa+vv788ADD7T3Mzg4mHq9noWFhVSr1YyNjeXYsWMZGxtLvV7P0aNHs7y8nPPnz99UGt0tZVlmaWkpy8vLWVpaSm9vb1ZXV/Paa6/l2rVr7fs8aRRvHzhwIC+//HK7SL2/vz+PPvpo5ubmcuHChSwtLbWv79DQUI4ePZqpqaksLi7mzJkz7WdOf39/arVaarVa1tfXs7CwkNXV1fT09GR8fDyjo6M5duxYzp0794bC5lbZerVazcjISI4ePZojR45kZGQk09PT+fSnP525ubmMj49namoqx48fz+DgYD75yU/m7Nmzqdfr6e/vz8TERAYHB7O6upobN25kfn6+XWC/E0VR5OjRozl06FC7wPr8+fOZnp5uPxOq1WqOHTuWe+65J0NDQ1lbW8u5c+dy/vz5rKystDPRKrYuyzIrKyup1+uZmJhoF2AnjaLwzmfPTta3ucS6r68vhw8fzuzsbHp7e9vP5u3207r3BwYGsr6+nsXFxVuuoZWVznV2Fmi3rl/r7620rnm373cAAAAAAAAAAAAAAAAA4J1NgTUAAAAAAAAAAAAAAAAAAF1XqVQyMDCQsbGxTE5O5qGHHmoXCq+srGRycjILCws5efJkyrLMsWPH8uKLL+ZTn/pUu+R1aGgoDz/8cEZGRnL+/PnUarUMDg6mv7//pmLPrSwtLeWll17KK6+8kp6envT19WVwcDCnTp3K448/nosXL2Z+fj4DAwM5cuRIFhcX88ILL+T8+fNZX1/P6OhoTpw4kbW1tZw9eza9vb2ZmprKvffemxdeeCG9vb05cuRIzp07l9nZ2XYp78jISC5evJjV1dV2MW9RFBkYGMihQ4dSrVZz+vTpHDx4MMlnS077+vpy5MiRnDhxIlNTU7l69Wqef/75FEWRoaGhrKysZGZmJisrK7ctTm2V3CbJ6dOns76+nr6+vnzoQx/K1NRUarValpeXs7y8nKtXr7ZLeFvF3TuxsbGRo0eP5vDhw6lUKjl9+nRWVlaSJCMjI1lcXMy1a9feUHw8NjbW/u/69euZmZnJ9PR0yrLM/fffn7GxsTz77LOZn5/P8PBwxsfH2+W0u9G6765fv57Lly+3y6/7+/vz3ve+N1evXs2zzz6bWq2Ww4cPt8ulWyXVZVlmdHQ0k5OT7eLZVsF1T09PDh8+nPe+97351Kc+dVPx9dDQUB588MG8+uqrmZyczKlTp3Lw4MG8/PLLee655zI/P5+JiYk8+OCDqdfref755zM/P5+xsbEMDg62i27vu+++vO9978vJkyezsLCQEydOZHZ2NvPz89uei/X19WxsbGRqaioHDx7MwsJCzp49mwsXLrRLd0dGRvKhD30ojzzySGZmZjI0NJTf/M3fzLVr11KWZVZXV/Poo4+2i9e30yoPbt1LrXVWKpVUKpXce++9OXDgQHp7e7OyspJz585lZmamXQheqVRSFEXGxsbS29uba9eupVKp5MiRI+1y9Fa5+ZkzZ3L48OH09/dnY2MjPT09OXXqVMbGxpIkDz30UIaGhjI4OJhXX301169fb9+b3da6Fq0S5nPnzmV6ejpra2s3PZ/6+voyMTHRfk4kycTERO655568+OKLN+1zaGgop06dyqFDh9ql0P39/VlcXMzo6Gje85735OGHH87Y2Fjm5ubya7/2azl//nzuu+++TExM5N57783Ro0czOzubqampjI6OJkmWl5czNzeXer2egwcP5uGHH05PT08uXLiQy5cvt8usl5eXMz4+ng996EPtQu7r169nfX09R44cyaOPPpqiKDI/P5++vr7MzMzk7NmzuXHjxo5L5gcHB/PhD384tVotn/nMZ7K2tnZT2XmrvH1mZqZ9TicnJ3P8+PHUarUMDAy0i7xHR0czMzOTF198MUtLS1laWsq9996barWaSqXSvkeKomgXXO+0CL7TwMBA1tbWMjIykmq1elPJdevebV2n+fn59rGMjo7m1KlTmZqayvXr12/6fdtq1vDw8BvWstV6W7mp1WrtYxocHMyJEydSr9dz9uzZrKyspFKppCzLmwqtNxd0AwAAAAAAAAAAAAAAAAD7nwJrAAAAAAAAAAAAAAAAAAD2pFW+3FnA2SrG7O/vz/Hjx3Po0KGMjIzk6NGjWVtby/nz59PX15ejR4+mLMs8++yzuXLlSm7cuJH3vOc9OX36dJaXlzM0NJT3vve9OXbsWF555ZUsLy9nYmIiMzMz7RLs25Vwtop4k7QLUhcXF3PgwIF2yfTVq1dz8uTJzM7O5vz58+2y4/7+/hw5ciQTExP5xCc+kaWlpfT09CRJTp06lVdeeSW1Wi3r6+t58cUXMzs72z4f/f39WVtbS29vbyYmJjI3N5eiKDIyMpLh4eEsLi6mXq9nZGQk6+vrWV9fT09PTx577LH09/fnhRdeyPXr1/PFX/zFGR8fz9zcXJJGMfRzzz3XLia9lf7+/tx7772Znp7OwsJCyrLM8vJypqenMzQ0lKmpqSwuLubZZ5/NyspK1tfXd1Rm2vmdtbW1rKys5Pf//t+f3/qt38rMzEy7QPWhhx7K9evXs7S0dFNpak9PT0ZGRrK0tJSXX345s7OzWVtby9raWiYmJvLII49kfn4+/f39eeihh3L//ffn937v99qlyjtdX+sajI2N5dKlS1laWmqXKU9MTOT48eP5xCc+kZmZmVQqlRw7diz33ntvarVaXnjhhayurqanpyfj4+MpiiJra2up1+vta3rixIl88IMfzOjo6E2FxEly8ODBjI6OZmJiIseOHcsLL7yQmZmZDAwMtL9z4MCBDAwM5MyZM7l8+XIGBgYyOjqavr6+rK+vt0tpy7LM888/n6mpqVy5cqV9Lbezvr6excXF9Pb2plKp5BOf+EQuXrzYLrktiiIbGxvp6+vLyMhIBgYGcuzYsfT19WV8fDxjY2N58MEHc+3atczMzLRLlG933uv1ei5cuJBnnnkmAwMDmZiYyOOPP57nn38+09PTOXToUM6cOZOlpaUcOHAgU1NT7bLw1jVbW1vLxsZGhoaGcvTo0WxsbGRgYCBnz57NwYMH8+EPfzinT5/OoUOHMj4+nt/+7d/OyspKjh07luPHj+f555/P0tJSTpw4kVOnTqW/vz/T09OpVCpvKFYuiiI9PT3Z2Ni46frtRaVSycDAQHp6ejI7O7tlifP4+HiGhoZy48aNbGxsZHh4OKdOncrg4GA2Njba29RqtRw/fjyTk5NZXFxsX6d6vZ56vZ75+flcunQpjz76aP7Lf/kvuXLlSq5cudIuo15cXMyhQ4dy6NChPPbYYzly5Eimp6fb3yuKIoODg7nvvvty6NCh/MZv/EauXLnSLtgeHh5OvV5PT09PFhYW8vGPfzw3btzI6upqarVa3v/+96enpyenT5/OxsZGRkZGUqvVsrGxcVPWt7OyspKXXnopJ06caP9OHDt2LOfPn8/MzEwOHDiQhYWFvPrqq7l06VIqlUpGRkbynve8J0eOHMmFCxdy9uzZ9r4effTRnDp1Ki+//HKmp6czNjbWXlNZlunv72+fv+3u560URZGLFy9meHg4IyMjKcsyw8PDWVpaSr1ez9DQUN73vvdlcnIyL774Yl566aWsrKykt7c3Y2NjqdVquX79evs+v1WOW++31l4URbuwu1qtZmVlpV30XalUMjo6moMHD+bs2bOp1+s5ceJEHn300UxPT+fs2bPtourN85RXAwAAAAAAAAAAAAAAAMC7jwJrAAAAAAAAAAAAAAAAAADuSKvEulW62SrqbBWSTk1Npa+vL9VqNcvLyxkbG8vQ0FDm5uZy/vz5rK6u5uLFi7n//vszMDCQoijS19eXAwcO5IEHHsjw8HAuXryY8+fP5/z585mbm2uXk95qPT09Pe0C6Z6enkxOTrbLtD/96U/n8uXL7ULfmZmZTE9PZ2VlJdVqNWNjYxkfH8/S0lJWVlbaJbet8tBarZaFhYV87GMfy8zMTKrVag4cOJAjR47kypUrWVpaysDAQLuctlqtZmBgIAcPHky1Ws3Vq1dz7dq1XL9+PUnapb2t89Xb29s+h88//3w2NjZy6tSpTExM5MqVK1ldXd3y2FtlumNjY1ldXc3MzEyKomgfz7Vr13L16tV2ce5Oy3u3KkA9f/58Zmdn2+d1Y2Mj99xzT6ampjI3N3fTNrVaLaOjoxkYGMiNGzdy/fr1LCwsJEn73AwPD+fhhx/O+Ph4rl69mt/5nd/JmTNndlQ42zmrWq2mr68vAwMDGRoaan/W09OTgwcPtkvVb9y4kaGhoQwNDeXAgQNZXV1Nb29vBgcHc+TIkQwMDGR2dja1Wi1jY2M5duxYDh8+nAMHDuTixYu5cuVKJicn2+XQfX19OXLkSMbHxzM6OpqXX345ly5dyvr6eh588MH09vamVqtldXU1/f39ue+++9pl6isrK/nMZz6TpaWlVCqVXLp0KUmyuLiYU6dOtUuCd+ry5cv5+Mc/nkqlkpmZmdTr9XY2+/v7c//992doaCif+tSnMjAwkPHx8XzlV35lpqens7y8nLNnz+a1117btjS787N6vZ4bN25kfn4+CwsLGRwczPvf//785m/+ZqrVapaWltqF38ePH09vb297u+Xl5XaZepLcc889KcsyL7zwQur1enp7e7OxsZH5+flcv349L730Uq5cuZJqtZrJycmsr69nfn4+GxsbmZmZyblz59rnemBgICMjI+nr68vGxkauX7/eLu2+fv16Ll++vOPzupWenp709vamLMt2OXFRFEnSfo4dOnQoq6urGRkZaWe5KIpcv349lUollUolvb29ue+++/LBD34wk5OTmZ2dzaVLl3LmzJn2867138zMTF544YXMzs5mbGwsjz76aK5du5Z6vZ6lpaUsLy/npZdeymc+85nMzc1lZWUlq6ur2djYyOjoaLuEeWlpqf3s6u/vb5/TiYmJLCws5Nq1a1ldXU1RFO3n14EDB9Lb25urV6/m0qVLOX/+fObn53dVilyv13P69OlcvHgx6+vruXjxYqampvLwww8nSQ4dOpTTp09ndnY2y8vL7etfq9UyPj6e6enpDA0NpaenJ2NjY6lWqxkaGsrs7Gz7eVGpVFIURUZHRzM2NtZ+lu8mRy1lWWZxcTGLi4vp6enJ4OBgJicn8+qrryZJ+/lalmV7RuuZd/DgwfT29mZlZSWXLl267TO3lfPV1dVUq9X2s6q3tze9vb1ZX1/PhQsXcvHixRRFkYmJiUxNTWVhYSEbGxt58MEHMz4+nueee65dWN9aPwAAAAAAAAAAAAAAAADw7qbAGgAAAAAAAAAAAAAAAACAO1KW5U0lmWVZtktzV1dXU6lUcuHChQwNDbXLpS9dupQXXnghKysr7e+3yqA3NjayuLiYCxcu5NChQ7l27Vq78LRV1pk0CmJvVeR84MCBnDhxIi+//HK7JHZ6ejpnzpzJzMxMVldXMzw8nGq1elPp8fDwcA4ePJiRkZHU6/WMj4+3S29bZbkbGxvtQu6pqamMj49ncnIy8/PzOXv2bPr7+zM6OpqrV69mZmYm6+vrWV5ezvLycoaGhjIzM5MLFy5kdXU1tVotExMT6e/vz8rKSrt0dXZ2Nq+88kquXbuWWq2W2dnZ9no7z3erLHfz+Th16lQGBwfT39+fo0ePZnV1Nb/3e7+X1dXV9PX1bVsMfbvS01qtlmq1msuXL6enpyePP/54u5T6lVdeyfDwcI4cOZLXX389a2trqVQqqdfruXz58hsKuNfX1zM7O5uXXnopk5OT6e/vz5kzZ3Lu3LmsrKzs8A682crKShYXFzM1NZXjx49naWkpg4ODmZiYSFEUeeKJJ3LkyJF2+fClS5cyNjaWz/u8z8vKykpu3LiRixcvplKpZHJyMg888EAOHz6c6enpvPjii+3i4VZpe5IMDw/n+PHjOXz4cF544YX2+q9du5aXXnopS0tL2djYyOzsbK5cuZKjR4+mt7c3Fy9ezOuvv57Lly+nXq+3i40XFxezvr6ehYWFdrHzTi0vL+fKlSsZHBzM+Ph4enp6srKykv7+/hw7diyTk5P5xCc+kVdeeSUDAwMZHR3No48+mitXruT06dM5d+5cZmdnd132W5Zl1tfX2+W5w8PDmZiYyMDAQGq1xv+svVarZXBwMMvLy+1S6fn5+XZR8sbGRiqVSpaXl3P9+vX2M+T69etZXV3N+fPns7S0lHq9np6enqytrWVoaCgPPPBAarVaKpVKPvWpT2VkZCTHjx/PBz7wgRw6dChXrlzJhQsX2vu7fPlylpeXd3V8W6lWq+np6WmXUC8tLSVpZLFVuFypVHL27Nl88IMfzPz8fHstR48ezcGDB3Pt2rV2AffGxkaWlpZy9uzZvPTSS+1nVVEU6e3tzdDQUBYWFrK4uJi1tbX287Ioily7di333HNPFhYWcu7cufYxtq5jpVJpP4uOHTuWj3zkI1lYWEi9Xs/rr7+ec+fOpVqtpiiK9jNxfX09ZVlmY2OjXQzeeo621t263p3Pou20CqWTRlH7yspKJicn8+ijj2ZpaSnT09NZXFxsH1u9Xs/58+czNzeX2dnZlGWZ5eXlnDt3LlevXs3k5GTq9XpqtVquX7+eer3eLudOkunp6SwtLe2qzLl1DXt7ezM2NpYDBw5kfn4+/f397Xu7Vqvl5MmT6e/vz+nTpzM9PZ319fX09fVlYmIihw8fzsLCQs6fP59r1661j2er89XT05PV1dXU6/UcOnSovd+1tbX09PRkfHw89913X65cuZLp6emUZZmRkZE8/vjjKYoiBw8ezOLiYq5du3bT78Pm30mF1gAAAAAAAAAAAAAAAADw7qPAGgAAAAAAAAAAAAAAAACAXess39yqjLNVZluWZZaWltoFtPV6PWtra3n11Vdz9erV1Ov1JI1y1bm5uaysrLQLrF9//fUMDQ2lt7f3DbNvVcLZKsg+cOBA+vr6Uq/Xs7KykuXl5ayvr2dtba1d6Lq6upqFhYUcPXo0jzzySJaWltpF01euXMnBgwfzuZ/7uVlYWMjQ0FD6+vpy5syZrK6upre3t11uurGxkddffz0zMzNZXl7OyMhILl++3C5brdfruXHjRl577bVMTU0lSbuUuFVg3dPTk3q9nkqlktXV1bzwwgu5cOFC+/y0CoVb53qr4+8s/q7+/9n7kx85zgTP+/yZme/hse8bGVyCa5AUqSSlVEqZqczKysrqAroPjb7NvBgM0Jf3MAPMZTB/wZzmMJcBXmAO7wB16Eb1vMjJqlLlVipVSamVi7iKDAYjgrHvHu7h+zYHpVlZGM2XWLhJ3w9AMMLd3J7HtsdP5Ney1NvbK0laXV11grZ2INje716vtR1EzeVyunXrlkqlkkKhkDKZjDKZjBP6dseny+WyVldXlUwmlc1md8Wzq9Wq0um0Hj586Mx5dHRUkjQ3N6ft7e2a83KfA3uO5XJZOzs7Wl5e1tDQkI4fP65yuaxMJqPl5WV99NFHGhgYUGdnp9LptKamprS8vKz29na1trYqm81qc3NTyWTSCefG43GVSiUlk0nt7Ow483cHrCuVilZXV5XJZPTNN98onU47kd2VlRUnfJ5MJnXv3j3NzMyoWq0qlUo5MWL7mIrFonN91tfX9xQGdp/zQqEgSWpvb1coFJJlWSoUCnr48KHm5+eVzWaVyWR08+ZNpdNptbe3a3BwUMViUcViUZlMpm7s1jAMmabpBJwNw1BHR4eGhoY0MDCgp0+fKpfLyTAMDQ8PKxwOq729XaZpOs9OMpl0gsOBQEDZbFYLCwtOpFmSdnZ2tL6+7oTY5+bmnOdqY2NDHR0dam1tdULoOzs7amtrUyaTUSAQ0MbGhlZWVpRKpSRJxWJxX4FuP3ZMPhqNanR0VIFAwHkm2tvbFY/Htby8rNnZWbW1tSmXyzkx5XK5rLa2Nud6bW5uanp6Wv39/c49YF9D97m2z1W1WlUmk9HTp0/V29ur3t5emaaplZUV5z51H6P9rE1PTyudTss0Te3s7GhnZ0dbW1vKZrMKhULa2tpSd3e3Ll26pFQq5axjMzMzMgxDsVhMIyMjznVPJpO7nulmBAIBRaNRZ02252efA3fAvlqtOlH3VCrlhN4rlYrK5bICgYC2trZULpdlmqampqaUSqVULpe1tbXlROntc9ksO/g+NDSkSCQi0zS1tLTkXO+zZ886P6fTaSUSCSeSXa1WnetXLpeVzWZVKBRkmqYkPXPv2d9bpVLJiYxvbm4qEolI+jZuXalUnO+0dDqtZDKpTCajtrY2maapfD6vWCymWCymra0t32OyY+RErAEAAAAAAAAAAAAAAAAAAAAAAAAA+H4x+MeFAAAAAAAAAAAAAAAAAAAAAAAAAAC8vgzD4B8K4qWwg6p2XNeOKvvFdkOhkFpbW2VZlnK5nDo7OyVJS0tLTlS0t7dXXV1d2tjY0Pr6uqrVqiKRiHp6ejQ0NKRgMKiNjQ2tra0plUqpWCw6EU530NkwDLW2turs2bMqFou6d+/erpiym2maam1tVU9PjyKRiIrFonZ2dpTJZGSapvr6+tTf3y/DMFQoFJRIJLS4uKhUKiXTNBWJRGRZliqVivL5vIrFohMilb4N5dqhatM0FYvFFI/HZRiGEx8Nh8M6efKkenp69PDhQ62trSkajTpBbzs4HY1GFQwGlc1mlc/ndx2v97qEQiG1tLQoEok40dp0Ou3MpRl+cWhbMBhUKBRyYqt2TLZSqciyLIXDYSegbIda7fC1HXf1zjkQCKitrU2dnZ0KBAJKpVLa3NxUNpvd8xwNw1A4HFY8HncCsPl83rmura2tCoVCTtg2l8spGAw68WHvvWXvu174NRgMOiHZRCLRMOjrjZD7nZODMk1T4XBYsVjMCa3n83ml0+ld8wsEAmptbVVXV5cikYgTjG4mYB0Oh9XT06P29nbnOlqWpWw26wTTz549q/7+fqXTaW1sbGhzc1O5XE6Sdt2b9r0bCARULBad5zYUCqmnp8eJjq+trSmdTkv69rzbgW47ol4ulxUKhRSLxWSaprLZrBOMPmx2gH5oaEhdXV2S5ISVs9mss57l83lnrSiVSqpWqwqFQk60uFgsyjRNtbe3q6OjQ5K0ubmp7e1t59xEIhENDw+rq6tLs7OzWltbk2ma6uzsVHd3twKBgGKxmBO19nvm7fXJjk/bsXL73rYsS+3t7err63Ouw87Ojra3t1WtVtXR0aGOjg4ZhqFUKqVEIqF0Ou0E15th3zfd3d1qaWlRMBhUNBpVNBrV9va25ufnnUC5JFmWtWtNtb9n7LXENE2FQiEnjG7PzY5bS98Gwvf6/yqEw2H19vaqo6NDpVJJ2WzWCUPbz4p9TkKhkBYWFrS4uOhc6/b2do2Ojqq7u1upVErr6+va3t5WOp1+5jvJMAy1tLQ418++h4PBoCzLkmmaMk1TlmWpVCppZ2dH+XxegUDAuZbDw8M6deqUZmZmdOfOHRUKBd91xl6r96tarR58cQIAAAAAAAAAAAAAAAAAAAAAAAAAAC8UAWsAAAAAAAAAAAAAAAAAAAAAAAAAAF5jBKzxsthBTT9+UWX3tqFQSNVq1QkcV6tVxWIxJ96ZyWScMexAbSwWU7FYVDKZdGK0fv9O1rIs9fX16ezZs1pcXNTjx4/rxlXtoKs3LmsHY1taWpzwth3+bRT1rfW+fc5M01S5XFa5XJZpmuro6JBlWUomkzVj2/Y5fRX+bXC9Yzzofu17xQ6t1hunXmT7dfQijqdW+Fz69tmxA8Du+Ho99vMZj8clSaVSSZlMRul0WoVCQZZlqbe3V319fSqXy9rY2FAymXSurXucWveVfU/YMWI7uOx+3xtHt4+vVjT9MAWDQcXjcXV1damlpUWSnDh6IpF4Jjhf7zq7r4EdtraZprkrcryzs+MEnN2hY3eUeq/sc20HoavVqkqlkrMu2vMzTVOVSmVX/HovY1iWpba2NrW1tTkh6HQ6re3tbSfgXO/zkn/03b122Pb7XFmWpVAo5FyLcrmsSqXizN++70ZHR9XT06O1tTUtLi4qm8063yt2DDwSiSiVSmlzc1PJZFKFQsGZjz0/O0Rtn2v3fO2x/I7Jvi4DAwN66623tLS0pJs3b9YM0BOwBgAAAAAAAAAAAAAAAAAAAAAAAADg+yfwsicAAAAAAAAAAAAAAAAAAAAAAAAAAACA10+9EKg3vukNZrrjpPa2uVzOCVq73ysUClpfX3fCpO4/teYVDocVi8WUzWYbhlXtMfyk02ml0+m6n/fbXy1+4dBKpaKtra2m5vmqeF5zsa9rs3HV70K02u15H0+j62ZH1feiWCxqc3NT29vbzj7cz2epVNLy8rLW1tZ2vb+X+VWr1bpz81sPvIHf56lYLCqRSCiVSsk0TUlyYsf15uX3ux2L9lOpVLSzs/PMmlSpVJTP5w8lLG8/f7lcrqn57ScObUexk8mkcrmcE4gulUp7jmF799vo/q1Wq019d0nfXkO/8+Bdo/zOh/29srW1pXQ6rXA4rEqlomw2uytK7t6vvR+/MLf7b78IvX0P2OPU8l1bMwEAAAAAAAAAAAAAAAAAAAAAAAAAQHMIWAMAAAAAAAAAAAAAAAAAAAAAAAAAAGBf9hIDbfS6X9zZHQNtNmpsfyYUCimbzTb9uZfpVYpT1+MNqOL18rzitX7Prlu1Wt0V7X3e8/GO/SLYUeYXMY47YOyOVruvwUHO7Ys6Z/Vi3fW8yPWnmbGq1aoCgYDv95R9jNlstuH+6n1feuPk9mt2MD0QCCgYDKq1tVWlUknlcrlm0Jz1GwAAAAAAAAAAAAAAAAAAAAAAAACA7x8C1gAAAAAAAAAAAAAAAAAAAAAAAAAAAPjOqFQqyuVyqlQqKhQKxDoPUbMxV+nFxInx+uL+ODhv0Pj7xH28je6lWiHn/fLur1wuKxgMyjCMmiH3g47v/bxhGAoGg4rH4wqHw4pEIhoYGJAkJZNJlctl37m6A+gAAAAAAAAAAAAAAAAAAAAAAAAAAOD7g4A1AAAAAAAAAAAAAAAAAAAAAAAAAAAA9uVVjdBms1nNzc2pWCy+7Kl8b1Wr1Vf2/sCLx73w4rzIc72fsV5G5L7ZsRptZ1mWwuGwcrmcKpWKLMuSaZqyLGtfx7PfuLYdsG5vb1dHR4daWlrU2tqqR48eaWlpaVdI2x6DeDUAAAAAAAAAAAAAAAAAAAAAAAAAAN9fBKwBAAAAAAAAAAAAAAAAAAAAAAAAAADwQryIqHG1WlUmk9GjR4+Uz+ef61ivmpcRhgVwONxx4b0+w6/jM3+Q74OXdbzhcFhdXV3a3t5WJpNRMBhUKBRSPp9XoVB4LoFov8h1tVpVPp/X6uqqtre3ZZqmqtWqcrmccrkcoWoAAAAAAAAAAAAAAAAAAAAAAAAAALALAWsAAAAAAAAAAAAAAAAAAAAAAAAAAAA8dy8qqGkYhorFokql0oH2c5CY7EH5BUsBAC+XaZoKhULq6+tTMplUMBhUd3e3isWicrmcKpXKnvbXzDrv3cb+PiqVSiqXy8pkMk19xjAMlcvlPc0PAAAAAAAAAAAAAAAAAAAAAAAAAAB8NxCwBgAAAAAAAAAAAAAAAAAAAAAAAAAAwJ7Zgcxm484vKgJtz8s9v9ctBv26zdftRce+AbxeXuc1IpfLKZfL6ciRIxoZGVEkEpEkzc7OKp1Ov7C12/5e837fAQAAAAAAAAAAAAAAAAAAAAAAAAAA+DH4x4gAAAAAAAAAAAAAAAAAAAAAAAAAALy+DMPgHwrihTMMY9ef7yL3v8H9rh4jgNeTHTBuVr31zH7PvU/WvNqCwaDi8bhaW1sVCoWUTqeVSCSUy+VeSEja79o0O265XD7wHKvVKjcHAAAAAAAAAAAAAAAAAAAAAAAAAACvGQLWAAAAAAAAAAAAAAAAAAAAAAAAAAC8xghY42UwTfM7Ha8GgO+SWgHrWv/XAGt7fd7vv2q1eqAwdK2oeDOf84uO13qNgDUAAAAAAAAAAAAAAAAAAAAAAAAAAN9PgZc9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvs/cMeKXMbbUfDj5RalWq69sTLtSqRzavtzH2Uxg3M3v/NQ6Z6/a9QUAAAAAAAAAAAAAAAAAAAAAAAAAAC8GAWsAAAAAAAAAAAAAAAAAAAAAAAAAAADsiWEYr2xUFABeV88rYu23XnvHsX9/VdZ2ez6vWsT6MObivs7e/dW6/o2i1N73X2YQHQAAAAAAAAAAAAAAAAAAAAAAAAAAvFoIWAMAAAAAAAAAAAAAAAAAAAAAAAAAAOBQuaOZRDUBoLGXuS6+Smuy/R1hGIbzp1qtvvQ5HlZE296PaZqSap97v9f3cg7sc/iyzxsAAAAAAAAAAAAAAAAAAAAAAAAAAHj5CFgDAAAAAAAAAAAAAAAAAAAAAAAAAABgX/YTx/TbnsgmALxYjYLM9vsvY222LEuBQECGYahcLqtcLu96/0XOyTvWfkPW7hi3335rvbaX8dyf53sVAAAAAAAAAAAAAAAAAAAAAAAAAADYCFgDAAAAAAAAAAAAAAAAAAAAAAAAAACgae6YZrVa9Y1k2q95g521ENl8ObyxU+D75vv4DOwlyPyi1+ZAIKBQKOSEq0ulksrlsjOPw7pGB7nu7rk0e37s70JvFLzR571z837/el+rFcg2DEOVSqWpuQIAAAAAAAAAAAAAAAAAAAAAAAAAgO8eAtYAAAAAAAAAAAAAAAAAAAAAAAAAAAA4dLWimgCAV9/LWLPL5bJyuVzdyPZhzquZeLV3m71Eq70/2xHparVaM07t3r83Ut3M2HzfAgAAAAAAAAAAAAAAAAAAAAAAAAAALwLWAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJphGM4f9++NgpneAKd7H/br36fo5l6CpLU+azvIeWsm4Aq8Kg7y3NTa34ted9zjvWrP36sQP641/vOYlzcQXYv7vvN+dzWzP78otb2dN2ZdLpdf+jUAAAAAAAAAAAAAAAAAAAAAAAAAAADfLQSsAQAAAAAAAAAAAAAAAAAAAAAAAAAA0DTDMGSaZsNtbN4QZ63wZ70gaL39effhF4dtNq7tHbfRZ/y28QZM/eaw12htrX3Ui682E0B9HvHceuf8sOPD+P5xB4QPM2J9mF7lQLXUXKz5VXxGm5nXXtb8Wuun9/vGL1i9nzW31n3hvZ9fxXMPAAAAAAAAAAAAAAAAAAAAAAAAAABebwSsAQAAAAAAAAAAAAAAAAAAAAAAAAAA0LRakWivZiKc1WrV2c4dxXZHSN0h6Ocd9tzL/puJV9f7bK3j8QZY/bZz/36Qc3LY5/RVCFS/qvFdr1c9cvw6aPZae4PEL9vrco8etnrH/TKi2t6I9EH3U29+3vfqBbQBAAAAAAAAAAAAAAAAAAAAAAAAAAAOGwFrAAAAAAAAAAAAAAAAAAAAAAAAAAAA7EutcGe9WGetbdz7825jGIYqlUrD+dQat5n46WHFUWvFSP3m0ChiXW9eB53vYUVTa12zWl6lCPnLcpA5flfD1/sNFO8nHvwqaPba7fd6HzT4/Dyi37XW4mbWzMOYQ721yhuT9huv3lpsGEbN42hmTfwuPcsAAAAAAAAAAAAAAAAAAAAAAAAAAODVQ8AaAAAAAAAAAAAAAAAAAAAAAAAAAAAATTEMQ6ZpPhPcrBU79W7j9557X35BUe/Pe9FM9Pog+/fyi5B6w6j2z+64tne7RvHZg8ZpvXPbr2bj1QeNs/qdw++KgxzTywrfPo+IdrNx972qt59m4tf7HfNl894bfoFm97nxOxcv6jhqPd+1gteNNBvJrhfp9q7PfnPez/lp9J34KsbWAQAAAAAAAAAAAAAAAAAAAAAAAADA64+ANQAAAAAAAAAAAAAAAAAAAAAAAAAAAJriDX7uJeDZKBB6kHDn6xj+tOdrnwP7GCqVinNO6gVW98Lv/DSzv72c13rbHea1eR2vtderEDh+1R1WvNr9t98z8Kpfi4MGzuu91ugcP4/zUy/Y7BeybhSirnWMB523d31udC7t3w+6Xr7uaxsAAAAAAAAAAAAAAAAAAAAAAAAAAHg1EbAGAAAAAAAAAAAAAAAAAAAAAAAAAABA07zBUXcotFY01DAMmabp/G2apiqViorF4jOhUPdn3EHTgwSSDyOS3WjcRsFUv/PmNx9vdNcd+nafq716HuHnWsdx2Of7sELe3wXP615+XTRz/PY96RdE9vq+nsdaXtTzXC/23GyAei/r7141OmbvvdXMuan3/Wj/zf0IAAAAAAAAAAAAAAAAAAAAAAAAAACeBwLWAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEqtAKc3ZOwOcpqmqUgkong8rlAo5IRLk8mkSqVS3ZBprTj2XmOhtULR3gDqQeKhfrHcejHYenP2C5rWi13Xev+gDrJPv7Dr6xBofZ5R3MP0POfW6By8zPPSbKx+L5/x28erfp8+T37H3+wa6vW8zqN33MOIbO/lXm/29VrfC7U+832+7wAAAAAAAAAAAAAAAAAAAAAAAAAAwPNDwBoAAAAAAAAAAAAAAAAAAAAAAAAAAABN2Uu41g5X9/X1aXR0VK2trSoUCkqlUsrlcspkMvsO4TYKzDbab71A9GHGa2vtu5njbvb49jPXw4i9Nhq/XpScSOv3w0Hu01rPSDP7+S7eX42eG79Q8l54P19vP/Xe209gvNH7fsfuXcPqrTfu95tZf7xrtN8+mhnTHsveXzPjfhfvXQAAAAAAAAAAAAAAAAAAAAAAAAAA8PIRsAYAAAAAAAAAAAAAAAAAAAAAAAAAAMC+uWOf9t+maaq9vV3Hjx/X+fPn1dPTo42NDc3MzCifzyuTySiXy6lSqew7dOwNnbq3PUjcupmxvftqJizb6LV623jns9/Iaa1j30tUut55d7/WTAj3RdhvrPtlz/tFMgxjV2zX7SBhZPdn9xou94v+2vvxG+OgXnZY3Xuc9d5/lezlvtjLutpo3fS7F/zUup8bbVvvvvcGrr1z9lv/mhn3Vb3GAAAAAAAAAAAAAAAAAAAAAAAAAADg9UfAGgAAAAAAAAAAAAAAAAAAAAAAAAAAAE2pFwy137MsS52dnZqYmNCVK1fU3t6uyclJffXVV1pcXFSlUlGpVFI2m1WlUqm7v3oR0/0Ghv3CuLXGaFYz56WZfXhDpu65HmaI+SCh1Fqh3b2GbA9rPrX27d2n9zzWGvf7FK62hcNhRaNRWZalnZ0d5fP5us/mq8AvItyIYRgyTVOBQECGYahcLqtcLu8Kd7+M6/+8wsWN7vVa2/utOfuJRXv3W+99v3i0+/da3wX11nK/tcpvLrXWinqaibJ7x6+13lQqlX2v7wAAAAAAAAAAAAAAAAAAAAAAAAAAAM0gYA0AAAAAAAAAAAAAAAAAAAAAAAAAAICmeUOb7rBpIBBQR0eH3njjDV29elWWZenzzz/X9evXtbm5qUqlonK5vGtf9YKdjeKk+4lDN9JMdPQw1Io/+4WWa33O1igc22jbgxyj33E0E3+1t3se8Wrvz945uX+2g8aSVCqVDn1OryLDMBQIBBQOhyVJR44c0dDQkFpbWzU9Pa3p6WmlUinnWT1I1Pkgn60VS2+0f79ws2VZisVi6uzsVFdXlyKRiFKplJaXl7W1tfXKXPP9nC+/ALPffv3O52GvB83Mzz1+s+O551/vXqg3lt86W2tOje63Zs+Re2z3mPY6Y6/1LyOcDgAAAAAAAAAAAAAAAAAAAAAAAAAAvj8IWAMAAAAAAAAAAAAAAAAAAAAAAAAAAKAhbwTUG1k2DEPRaFQnT57UxYsXVSwW9cknn+jOnTtKJpMql8syDEOmaSoYDMo0TeVyOVUqFd8YaKVSeTEHVsdhhFybjWA3isu6463NhH3dn6sVXd1rRNbvs/X27/cZy7JkWZaq1aoKhcKexvTuyzvefs5RJBJRX1+fqtWqVlZWlM/n9z2nF2GvUXW/cxEKhdTb26vh4WFJ0uXLl9XV1aWOjg5duHBB//Zv/6Y7d+4okUioVCo913k3+3qteHGj62zfc+3t7Tpx4oQuXryo4eFhtbS0aGdnR59++qk+/vhjZbPZfR9bLc1eqxcdL24U/bZ513g/3vO/l+OtFc9uFI/2vm+a5q7P+t0r9dYE+x4xDEOVSqXhd0+jULb3NcuyFI1GFQwGlU6nnXXP3o9pmk7MGgAAAAAAAAAAAAAAAAAAAAAAAAAA4HkgYA0AAAAAAAAAAAAAAAAAAAAAAAAAAICG3NFRO7RpB0PtMHU8HtfIyIgk6ZtvvtGDBw+0vb29Kwgai8U0ODioQCCgmZkZZTIZZ/920LNeyHM/IVy/35uNLjdiz7tW9LTRnNzzqXXs+52j9zrVsp+QtV88ulHs1rIstbW1KRqNKpPJqFgs7mnMZjW7P9M01dXVpQsXLiiRSCiRSKhQKDz3kGwgEJBhGCqXy3sOte91bn7R8o6ODp09e1bHjx9XsVjUzMyMPv74Yx07dkzvvfeefvGLXygQCOiLL75QMpk80Pmwg9mBQED5fN655o2Op5kYei3ugLFpmmpra9OZM2d08eJFRSIRTU5OKhqNanx8XJcuXdKDBw+0sLDwzP79gsd2LLlSqTSc44sKEh9GKLte3H4v0fTDWFebWUtsoVBIsVhMlUpFOzs7z6yhzRxHIBBQS0uLwuGwMpmM0un0gY/BPWY8Htfo6KgikYgePnzoBKy98yNgDQAAAAAAAAAAAAAAAAAAAAAAAAAAnhcC1gAAAAAAAAAAAAAAAAAAAAAAAAAAADgQO7wZCAQUDAadyKv9ty0YDGpgYEATExPKZDJaWVlRLpdTpVLxjTq7911vXL/Yaa1wtd923v3sJYAcj8dlGIbS6bTK5fKhREj3EnCVmgvM1gpjuz+7n7nvJW5rWZYsy1KlUlGxWNx13p/n2H73gh26TSaT+vrrr5XL5ZTNZp97RDYSiai7u1uWZSmRSCiVSr3QcG0wGNTRo0f1xhtvSJI+/fRT3bp1S7lcTsvLy7IsSz/+8Y91+vRpPXnyROl0WqVSqal9+0WfI5GIjh07Jsuy9PTpUyWTyT1Hu937c6v3/Nvs8S9duqRQKKRPP/1UMzMzOnLkiOLxuDKZTFPjRSIRtbS0KBKJqFAoKJVKKZfL1bx2+72n92sv64VtvzH0Wmv1Qcb1nq9mrm0gENDAwICOHj2qlZUVTU1N1dy337h24LylpUUDAwMKhUJaXFxUJpNpai7NrNPBYFA9PT0aHR1VKpXa9V3n/TwBawAAAAAAAAAAAAAAAAAAAAAAAAAA8LwQsAYAAAAAAAAAAAAAAAAAAAAAAAAAAEBDjaKl1WpVqVRKiURCIyMj6urqUkdHh7a3t5XP5yV9GzCORqPK5/NaWFhQLpdz9ucNhtpjuP9uFL6tFROtF0NtJqZaSyQS0dmzZ5XL5TQ9Pa1UKtXwM+5xDxJu3uu29cKujcLdtebpvSf8YqzuzxYKBW1sbNQdq5lj2etnvIFud1g9lUrtum6N5tVM5NyyLIXDYRWLRRWLxV3vxWIxjY2NSfr2fOzs7LywcK1hGIrFYpqYmNDg4KA+/PBD3b171wn2bm1t6e7duzpz5oxaW1vV3t6uYDDYdMDaO5YkdXV1aWhoSIuLi06sfr+B9lqf875u34uWZamzs1PHjx9XR0eHHj16pOXlZcXjcZ06dUqhUEjXr1937slaY7e0tOjChQsaHx9XPB7X06dPdefOHS0sLKhYLPre93sJKR+G/Twbze7LO19vpLzWa3sdr5nzY29jh6fPnTun3t5eraysyDTNZ74j7HvDvofcP0vfBqY7OjrU39+v7e1t53n1W7+8c7XvSdM0fddIO+De09OjWCymubm5XfeL9zuAgDUAAAAAAAAAAAAAAAAAAAAAAAAAAHhezMabAAAAAAAAAAAAAAAAAAAAAAAAAAAA4PuuUVy0Wq0qk8locXFR6XRa3d3dGhgYUDQadSKdpVJJa2trunnzpqamppTNZn334zeONyJq/7Hjod7X7Ndr7WMvLMtSa2ur4vG4LMtyxmlra9OVK1fU19e363Uv7/z2Gix1f9b+3f3eXviFwe0Qq3c793n0Hpv7dTtMHggEnnnfPVa1WlWlUlGlUnlmf35jeOcSCAScP37X170fm31s3kC6e7+2cDisaDTqXMtaGgV2+/v79f7772t0dFSRSMSZq2ma6uzs1OjoqGKxmMrlcs39uOd+WAKBgI4eParLly/ryZMnunHjxq6AdqVS0ebmpgqFghOM3+v43msaj8e1sbGhhYUFJ2Qv7Q4LN9rffs+Bfbxnz55VIBDQ+vq6uru79dZbb2lgYEA3btzQ3bt3lcvlap7rSCSi8+fP68KFC4pGo4rH4+rq6lJLS4sCgcAz8693D9tzCofDu54Vv883u5bUi8i71QpqNzr/fs9Po/3WWqub1cxnTNNUV1eXRkdHtbq6qrW1tZr78fvdNE1ZlqW2tjadOHFCAwMDKhQKTsDa7zvGXoPsNcP9nt+87WB8V1eXyuWytra2VC6Xa55PAtYAAAAAAAAAAAAAAAAAAAAAAAAAAOB58f+XrQAAAAAAAAAAAAAAAAAAAAAAAAAAAICLaZq7wst+AeRyuay5uTnNz8/r4sWLOn36tDY2NpTNZlUoFFQul53QqHsf3v3Yv7vjte54aKVSUaFQcLZ3R0ntYKgdyy4UCnWPq1Yk1b3Pzs5Ovfvuu1paWtLt27eVy+VkGIbC4bD6+vr08OFDZz7N7L+ZaK9fMNz9Ocuy1N7erlAopGQyqWw2u+tc+H3Osiwn3FosFlWpVJz3vdc0GAwqHo+rpaVF5XJZ29vbzhjefR87dkyjo6O6c+eOtre3n3nfvmbua2vPx37d795yb9/V1aUzZ84oEokolUppZmZGW1tbKhaLvvdMM+HjcDis06dPa25uTtvb2xobG1MgEND8/LxSqdSeA86GYSgQCOj8+fP6wQ9+oGQyqdbWVi0sLCiZTKparerIkSPq7e3V8vKystnsroi2fT2818+yLFmWpVKptGubvTAMQy0tLbp69ari8bg+/vhjra2t7Tr3pmnqyJEjGh4e1meffabFxUUVi0Xf6Lr32fTO2/57ZmZG1WrV9zp5Q+Pe+e7l2Lz7MQxDra2tOn78uI4eParl5WV1dXVpbGxM4XBYH3/8se7fv69UKlV3vz09PTp69KiePHmi9vZ29fT0KJPJaHt7W6VSqak5SVIwGNTIyIhGR0cVDAb1+PFjLS8vq1AoONc0EAios7NTXV1dqlar2tzcVCqVqrmGeQPxHR0disVi2tjY2BULt/dvPxeBQEChUEiBQEDlcln5fP6Z59BvHPd7oVBIpmk664jf9bLvC781w70/v+8C+/vGb06WZSkajerYsWMKhUKamppSNpt1xnRv7743vQKBgAYHB3X69GmlUiklEgmVSqVnzqtpmgoGg7vmalmWE6P2HrP9fiQSUXd3t/r7+5VIJHzXz1o/AwAAAAAAAAAAAAAAAAAAAAAAAAAAHCYC1gAAAAAAAAAAAAAAAAAAAAAAAAAAAGjIG4n1xjar1aoqlYp2dnZ0//59dXd36/jx47p8+bK2t7e1srLiG1Lt6upy4sjumK+9nfRt/HVgYEADAwOSpIWFBS0vL6tcLjvbWpalnp4evfXWW5qYmFAmk9Hf/d3faX5+vuFx+YVD7WB2LBbT6dOn9f777+tPf/qTZmdnVSwWJX0bQLYsS5ubm85r7nPlDqAGAgEneuoO0jYTjPXGYQOBgI4dO6b33ntP5XJZH374oebn52WaplpaWhQIBLS1teWEZU3TVDwe14kTJxQKhTQ8PKwHDx7o8ePHTljYPeeWlhaNjY3p6tWrOn36tLa3t/Xxxx/rs88+c+ZuB4jD4bB+9atfqVAo6ObNmwoEAs69IEltbW0aGhrS5uam1tfXVSqVZJqmenp6NDo6qnQ6rUqlov7+fi0sLGh6etoJA9sh2OHhYV27dk2xWMyJ/La1ten69etKJBK7zo03oOx3PqvVqkzT1ODgoN5//3198MEHymazisfjOnXqlHOtNjY2tLy8vCsG7L1O7j8jIyMaHx/Xf/kv/0V9fX1qb2937sNHjx45gWj7sydPnlR3d7dM09TTp0/1+PHjXVFxy7I0MDCgixcvamhoSL/+9a+1vr5e876pxQ6SDw8P691339Xjx491//59J05tb9Pf36+/+Zu/0erqqr744gvnHvKeW/f8bPZzWyqVnPvJMIxdYXf7mW9paVE8Hpdpmkqn00qn0yqXy6pUKr6Bbu/977f2eLex7/mhoSH19PSoWCxqcHBQ8/PzunPnjpaWllQul51r7Z6rvf+WlhZNTEw4Mexz585pfX1d9+7d0/r6uiqVihOFt8cMBoPK5/POPWzP46c//akuXbqkZDKp27dvK5vNOtuEw2ENDAzo+PHjOnnypEZGRmRZlmZnZ/WnP/1JDx8+9A3Au1mWpfPnz2toaEgfffSRdnZ2dgWqS6WSE70fGxvTiRMn1NbWpmw2q/v37+vOnTsql8u7nhV7bfTG1Lu6unT69GklEgnNzs4qk8koEPj2vy0ol8sKBoPq7+/X8PCw5ufnNT8/79wvhmEoEomoWq0qnU4743R3dyuXy6lSqWhsbEyxWEzz8/NaW1tz1qTOzk7FYjFVq1WFw2GdOXNGm5ubWlxcdGLSfs+F/Zp7PbQsS/39/ZqYmFBnZ6dmZ2cVCoUUCoVUKBSc89DS0qLx8XENDQ2pVCppaWlJ1WpV8XhcCwsLWllZUT6fl2EYikaj6unpUU9Pj3p7e9Xf3694PK5wOKy5uTnt7OzINM1dz7g9P+LVAAAAAAAAAAAAAAAAAAAAAAAAAADgeSJgDQAAAAAAAAAAAAAAAAAAAAAAAAAAgLrckdt6gdBqtapyuazV1VU9fPhQ3d3dGhoa0ujoqHZ2dpyY5/Lyskqlknp7e3X58mXNzc3p/v37TsjTHTBuaWnR2bNnde7cOaVSKT148ECpVGpXzDUSiWhoaEgXL15UV1eXM1Y0Gn3mOJoJhQaDQXV3d+v06dM6fvy4zp07pxMnTsg0TZmmqd/+9rcqFAoaGhpSKpVSKpVy4rySnLC2HQ7u6+vTsWPH1NnZqbW1NT148OCZ8LLfefYLWQeDQR07dkx/8Rd/oYGBAX355ZdKp9Pq6OjQ2NiYTp8+rdXVVX3yyScqFAoKhUI6fvy43njjDbW1tckwDA0PD2ttbU1PnjxxQsP2cQ8ODuqNN97Q+fPn1dnZqUKhoNXVVW1tbUmSEy0OhUIKh8M6fvy4enp6tLy8rHfeeUflcllTU1NaXl5WMBjUpUuXNDIyops3b2pjY0OSFIvFdPz4cb311luKx+Pq6OiQZVl6+PCh/tt/+2/a3Nx0xjpy5IjefvttzczMaHp6WkNDQ/qrv/or9fT0KBQK1byGfpFf92vRaFQnTpxQb2+vIpGIWlpaNDIyoomJCV28eFHt7e365ptv9Ic//EGTk5PPhLvd+6tWq2pra9PZs2d17do19fT06N69e/roo4+USCQ0NzcnSTpx4oQGBwcVCAT04x//WB0dHQoEAkqn07p37542Nja0ubnphN2vXr2qt956S319fbp586ZvJN1W7742TVOdnZ164403FA6H9dlnnznhcvs8d3V16Ze//KXy+bx+/etfa21tTZVKRaZpyjCMXQFle/vR0VFJUjqd1rFjx7SxsaGpqSltbW3JsiwFg0Fls1lnHpFIROfPn9cPf/hD9fT0KJFIKJFIaH19XWtra1pcXNTi4uKu579Z7mi29O392dvbq56eHqXTaT148EBfffWVZmZmtLOzo3A4rLa2NvX19Wl0dFSlUkl/+tOftL29rUqlolgsph/84Af6xS9+oUAgoEKhoLt37+rzzz/XwsKCWltb1d/fr8HBQYXDYeXzeQWDQWUyGd29e9d5Xrq6uvSLX/xCJ0+e1CeffKJ79+4pkUg41zISiejMmTN67733FAqFtLm5qZWVFY2MjGhoaEidnZ27osf2efHGxHt6enTx4kX19fXJNE21tbUpFAppZmZGN27cUDKZ1PDwsE6fPq2uri7nHI+NjamlpUXT09Pa3t5+5v5yrz32db906ZIsy9L8/Lyq1aoGBwd19OhRlUolPX78WMFgUKdPn9aFCxf09ddfa3NzU62trerr69PQ0JCGh4dVKBT09ddfa3p6WvF4XFevXtX6+rrC4bATCk8kEs7+h4eH1dbWpmg0qu7ubrW0tCiZTOrevXtOmNobQPcGuO1jsixLHR0dOnv2rMbHx9XR0aGf/vSnOnfunP7t3/5N9+7dU7Va1cDAgC5fvqyhoSFtbGwon8/r8uXLOnLkiJaXl7W+vq5AIKD29naNj49reHhYoVBI6XRaktTa2qqBgQElk0ktLS05z5Dfs0vAGgAAAAAAAAAAAAAAAAAAAAAAAAAAPE8ErAEAAAAAAAAAAAAAAAAAAAAAAAAAANCQHQmVng3Lul83TVMtLS1qb29XIBBQJpNRPp9XW1ubTpw4ofb2dpXLZW1sbGhgYECnTp2SZVna2trS4OCgDMPQo0ePtL29rUAgoJMnT+rChQtKpVK6c+eO5ufnlcvlJH0b5o1GoxobG9MPf/hDdXd3a3V1VdVqVbdu3dLS0tKuEKs3Emq/5p6/HWoNBoMKBoPq6OhQe3u7NjY2dO/ePc3OzkqS2tvb1dvbq3Q6LcuyNDY2pp6eHpXLZc3Pz2tjY0OmaWpkZEQXL17U6dOnZRiGHjx4oMePH9cMLFer1V3n2i0SiejUqVP6+c9/rr6+Pn399de6d++eYrGYzp07p8uXL6tYLOrp06dO2PvkyZP6+c9/rmg0qkwmo87OTl2/fl0PHjxwIraVSsUJhf/oRz/S0NCQVldX9fHHH+vJkydaXl52ouHBYFD9/f06e/asBgcHdezYMfX09Cibzero0aNaX193rs3o6KhOnz6t7e1tZTIZVatVhcNhjYyM6OzZs+rv79fKyooeP36srq4uGYahUCgk0zQlSX19fXr77bdVKpU0NTWlWCyms2fPOhH0XC5XM1Jbj2EY6u7u1sTEhIrFokqlkvr7+zUxMaHOzk4tLy8rk8loeHhYV69eVTqd1tzcXN2IcCaT0e3btxUKhVQul/WP//iP+uabb1QqlVStVtXT06Pz58+ru7tbkrS5uanbt2878XX7mIPBoIaHh/WXf/mXunDhgh4/fqyPPvpI169fVyqVcu7bvQgEAurs7FRfX5+ePHmiyclJ5xiCwaBGRkb05ptvqqWlRX/84x+1ubmpoaEhJ4JsWZYSiYRWV1eVSqWc6/D2228rEokonU5rfX1dT548USaTUUtLi8bHx9XS0qIvvvhCxWJRwWBQ58+f11//9V8rlUrpxo0bsixL58+f1/Hjx3Xr1i3Nz8/vOsf1rl89pmkqFotpcHBQ1WpV169f14cffqiFhQVFo1FdvnxZg4ODymQyCofDOnv2rAKBgFZWVnTr1i1ZlqWRkRG9++67Ghsb05MnT/Qv//IvunPnjkqlki5evKhz586ptbVV2WxWoVBIPT09SqVS+qd/+idlMhkZhqF4PK4LFy7o2LFj+ud//mfdunVL+XzeOcZQKKRjx445z1w6nVZ/f79M09Ts7Kzu3r2rBw8eqFwuP3Pcpmk69739/J8/f16tra2Kx+MqFosKhUIqFAqam5vT2NiYzp07p3K5rPv37yuRSGh0dFThcNiJhteLohuGoba2Np0/f94JtKfTaQ0MDGhiYkIdHR2amppSMBhUPB5XV1eXE5v+D//hP6ijo0P5fF6JRELLy8vq7e3VW2+9pUgk4gSvR0dH1dLSouXlZU1OTioSiejChQvq7e3V2tqapqam1NnZqSNHjqivr0/37993nstyubxrLXevB961wX4eBgYGFIvFlE6nVSwW1d3drbNnz2p+fl5dXV36yU9+okgkoj/96U+anZ1VPB7XD3/4Q7W3t+vu3bva3t5Wf3+/fvSjH+nYsWOamZnRnTt3tLKyolAopEwmo7a2NiWTSW1vb8s0zV1xdju6vZdQOwAAAAAAAAAAAAAAAAAAAAAAAAAAwH4QsAYAAAAAAAAAAAAAAAAAAAAAAAAAAEBdzQQ2LctSJBLRkSNHdOXKFZ05c8aJTq+srCgej6uvr0+RSEThcNiJiMZiMXV3d+sv/uIvdP78eWWzWX300Uf68ssvFQgE1N/fr0KhoJmZGa2vr6tYLDpjBgIBdXR06Pz583rjjTcUDAYVjUb19ddf69atW07ouhFvELhQKGhlZUXpdFqpVEqVSkW5XE6///3vtbKyokqlop6eHnV0dCgUCundd9/V0aNH1dbWpkQioS+++EI3b95UJBLRxYsXNTEx4YS5Hzx4sCtE7Bda9bJD3cePH9ePfvQjHT16VAsLC1pYWFBLS4tOnjypiYkJdXd368mTJ9ra2pJhGOrv79ebb76p/v5+pdNp5XI5/e53v9PDhw+dOZim6Zzn48ePK5PJ6He/+52mpqaUSqVULpdVLBZVLBZVrVYVCAQUj8cVj8fV3d2teDyuGzdu6JNPPtHW1pay2azy+bxaWlo0Ojoq0zS1uLioRCKhSqWivr4+nT17Vl1dXbp586bu3Lmjjo4OdXZ2am1tTdlsVtVqVZZlqb+/X0eOHNHOzo7eeecdnT9/XkNDQ7p//77W1tacGKxfmNzmPa+maSoYDOrEiRMaGRnR48ePlcvlNDIyomAwqPv37+vzzz9XPB7XlStX1N7eru7ubi0tLalQKNS8Z0qlkkqlkiKRiNbX17WxseGcMztKPTY2plKppPv37+vOnTsqFos6d+6cAoGAZmdnlclkFAwG1dfXp/7+fi0sLOirr77S48ePlU6n9xyuttmR997eXj18+FBbW1sKBAKKxWIaHx/X5cuXVS6X9fHHH2t2dlYnT57Ue++9J9M0tby8rEKhoCNHjmhtbU3T09NO9Pn06dPa2trS7du39cUXXzjx8hMnTuhHP/qRJicnnUBvR0eHTp8+rXQ6rc8//1zb29uamJhQJBLR8vKyHj9+rI2NDeeaHYQ9Xm9vr3Z2dvT48WOtr6+ro6NDb7zxhk6ePKmZmRlNTU05oW77GTdNUz09PXrrrbc0NDSkzz77TB999JGmp6dlmqYuXryoN954Q+l0WtevX1c+n9elS5cUjUb1+PFjLSwsqFAoyLIsDQ0N6cKFC07cu1QqKRaLKRQKKZvNKhAIaGRkRB0dHVpdXdXs7KxWVla0sbGhjY0NpdNp5fN5Z53wOy+maWp4eFhXrlxRpVLRP//zP+vRo0caHBzUkSNHtLm5qeHhYZ05c8ZZGzOZjEZHR3Xy5EmlUik9fPjQGcfvXBqGoUAgoL6+Pg0PDyuXyykUCunSpUtOyH5zc1NLS0saGRnR2NiYBgcHnXPe2tqqGzduaHJyUrlcTvF4XFevXlV3d7fzbAwMDKhUKunRo0e6deuWtra2NDY2pkgkotnZWU1OTioUCml8fFzt7e2amZnR3bt3lcvlnMC3l1/U3jRNhUIhdXR0KBwOa2ZmRtPT04rFYjp9+rTzDA8NDTnHYMfXz5w5o4mJCQUCAfX29urkyZMaGBjQ2NiYNjc39fDhQy0sLMg0TQ0ODurEiROqVCqanJzUzs7OrvW+Wq3uirXv99kGAAAAAAAAAAAAAAAAAAAAAAAAAABoBgFrAAAAAAAAAAAAAAAAAAAAAAAAAAAA1OUXTrXDpoZhKBQKqaenxwl8trW1aXp6Wrdv39bs7KwMw9Do6Kji8bgWFxedgG5PT4/i8bjGx8eVzWa1sLDgRFIfPXqkSCSi7u5updNpJRIJJ7JqGIYTIu7o6FBfX58ymYymp6f14MEDLS0tKZ/PyzTNZ+KmflFTv/cqlYrK5bICgYBM09TGxoby+byznWmaamtr08jIiBYXF3X37l11d3crGo0qn88rFAppdHRUvb29Wl5e1jfffKOpqSltb29L+ja+XS6XVS6Xd8VLvaHaYDCogYEBjY+Pq7e3V9VqVclkUi0tLXrzzTedCGoikVC1WlU2m1WxWFQoFNKxY8fU39+ve/fu6d69e9rc3FQul1MsFpNpmkqlUiqVSopGozpx4oQTkd7e3lZXV5eGh4eVTqc1Pz/vnPtcLqeZmRklEglZlqVsNqsbN25ocXFRhUJBpVLJOT+RSESJREKbm5vO9YjFYiqXy3r48KHu37+vdDqtkZER5fN5TU9PK5vNSpIqlYo2NjaUSCR08uRJnTlzxglx24FrbwS2WZ2dnbp06ZIikYjm5+eVSqW0s7Ojr776StPT01peXtbx48e1tramzc1Nra+v77qP/O4hO1Td2tqqRCKhXC7nzM8wDHV2diqfz2tyclJff/21lpeX1draqrm5OS0vL2t6elrFYlGWZWl1dVUPHz7UuXPn9Mtf/lJnzpzRzZs39ejRIyc83izLshSPxzU6OqpAIKDFxUVVq1UNDQ3p4sWLzv379ddfa319XaFQSKdPn1Zvb69u377tBMbt87+zs6OOjg4dPXpUmUxGX3zxhb788kutr6+rUqmou7tbV65ccWLE9vWJRqPq7e1VPB7Xm2++6Tw76+vrevTokROGt9cUd+zXq9YzbP9uWZa6urrU1tamra0tzc/Pq1KpaGhoSGfPnlUoFFIul9Po6KiuXr2qlpYWffTRR06s2DRNWZal5eVlTU5OqlAoaGBgQOFwWCMjIyoWi1pcXFSpVNL4+LhOnTqlQqGg+fl5lUolBYNBWZaltrY2tba2OmOdPXtWnZ2dWlxcdMLpmUxGhUJBhmFoZ2dHc3NzzvNSqVScZ8k0TbW0tMgwDGUyGRWLRUly1pnu7m7duHFD//Zv/6Zqtapjx44592NPT4/6+/sVCAScEHMkEtHc3Jy++uorLS4uOtep3loUCoUUjUY1PDzsxJlzuZx2dnbU19en999/X9lsVqlUyok2nz59WgsLC5qamtLW1pZaWlp04sQJtbS06MGDB0qlUhocHFQ8HtfDhw91+/ZtLSwsKBaLKR6PyzAM5fN5tbW16dixYzp9+rTy+bzu3bu367n0u19qhdCj0ah6enpULpc1Nzen1dXVXd9BOzs7Wl5e1tLSko4dO6aRkREFAgGl02l9/fXXikQi6u/vV39/v2KxmCqVitLptMLhsE6dOqXBwUEdO3ZM0WhU33zzjR4/fqxsNrtrrrXuaQAAAAAAAAAAAAAAAAAAAAAAAAAAgOeBgDUAAAAAAAAAAAAAAAAAAAAAAAAAAADqsqOy7t9t3d3dGh8f18TEhDo7O7WxsaFbt25penpam5ubKhQKCofDSiQSunfvnubn57Wzs6O2tja1tbWps7NTxWJRn3/+uba2tvQXf/EXkuQEkLu7u1Uul7W9vS3TNLW9va2dnR3l83kZhiHLshQIBBQOh9Xb26tYLKZ8Pq+pqSnduHFDa2trNeOg9nF437djqKZpKhqNqr29Xdvb2wqFQk7UNRKJqLOzU+vr6/rkk0+0sbGhd999V5ZlaWdnR6ZpqqOjQ4VCQXNzc1paWlIsFlNXV5d2dna0urqqdDq969z6zTMYDGpkZETRaFRPnjxRLpfT2bNnNTY2JsuytLi4qJmZGUUiEZ07d07b29tOaNswDMXjcbW1tamjo0NtbW2KxWLa3NzUkydPnGitHSEfGBjQ8ePH9eabbyqbzerx48e6ceOG0un0rlB0qVRSuVxWNBrVxsaGNjY2VCwWnXNTrVaVyWR0584dVSoVbW5uOu+vrKxoe3tbpVJJ6XRagUBAjx490uTkpNbW1lQqlZxx1tbW9Pvf/15zc3O6du2aotGobt++rY8//lizs7POcXrvUb+Qrfs1+3769NNPdf/+fSWTST169EiPHz929rm8vKzNzU0lk0klk8ldx+YNV9tj24Hq5eVlJzRtGIbK5bKmp6e1srKizc1NbW1tqVgsqlgsOvsuFAoql8uqVCpaWFjQH//4R33zzTcaHR1Ve3u72tvbnWh3s+z7dGRkRKOjo9ra2tLW1pbGx8edgPf9+/f18OFDJRIJJ9hux8Z7e3s1MTGhwcFBtbS06P79+9rZ2VFXV5fW1tb01Vdf6auvvtLGxobK5bJM01RPT4+6urp08+ZNra6uOnPJ5XLa3t7W8ePH1d/fr6WlJS0vL2tjY8OJtFerVefc+F23ekFre1vTNBUIBNTT06NoNKqVlRVtbGwol8splUoplUppfHxcP/nJT7S9va1yuay1tTV1dHTo1KlTevDggRKJhG7fvq1IJKILFy7o1KlTevTokZ4+fapkMqm+vj69+eabCgaDqlQqTgh+bGxMkjQ5Oan19XWtr69rcXFRJ06c0NDQkBKJhCYnJ51Icrlc1pMnT9TR0aGLFy/qwoULamlp0czMjNbX15VKpZTNZmUYhoaGhjQ+Pq6lpSVNTU0558g+Z5999pm++eYbra6uqrW1VZFIRIFAQNvb21pdXdXW1pbGxsYUjUaVSCR069YtPXjwQCsrKyoUCk4su5ZqtaqlpSXduXNH/f39KhQKWltb087Ojnp6epx9b21tOfd6T0+P4vG4gsGghoaG1NHRofHxcfX29mpyclJTU1MaGhpSb2+vnj59qs8//1zT09NKp9NqaWlxwulnz55VOp12no90Oq1isfjMnL3Pf61QdKlUcs7v0tKSyuWylpaWtLKyosePH2tnZ0dPnz7Vv/7rv+rx48cyTVOZTEabm5va3t5WS0uL2tvbFY1GNTg4qPHxcZ0+fVonT55UuVxWPp9XqVTS2tqa5ubmlEwmnbm7v1vccyJgDQAAAAAAAAAAAAAAAAAAAAAAAAAAnicC1gAAAAAAAAAAAAAAAAAAAAAAAAAAANgTd8TXNE2Fw2EtLi7q66+/1srKihKJhHK5nEqlkhP2nZub0/z8/K7waDAYVKlU0kcffaQvv/xSo6OjMk1Tc3Nz2t7eViaT0dramiYmJjQ6OqpkMqlvvvlGt27d0uLiokqlkpaWlvTpp59qeXlZoVBIuVxOOzs7TiR2P2HQarWqSqWifD6vlZUVPX36VE+ePHEiv3ZweHt7W7du3dLU1JSCwaAMw9Dm5qY2NzeVy+UUCATU29uraDSqrq4uJZNJLS0taXt7W7lczpmbO4js/b1QKOjhw4cyTVOFQkHValUbGxu6efOmyuWy0um0stmswuGwlpeXlclktLW1pXK5rKmpKR05ckTj4+MaGRnR8vKybty4oenpaSecLH0bF75//74SiYTi8bgTCp+fn3fi1HYguFKpyDAM5XI5PXr0SBsbG0502B2Qzefzmp+fV7VadeKthmEok8kom82qUqmoUqmoWCxqYWHB2bc7PlssFrW9va0jR45odHRUt2/f1ocffqiZmRllMplnzp9fCNYvcJtMJvW73/1OhUJBqVTKma89J9M0tbKyIknOa959+I2TSCR08+ZNFQoFJ9ht72NxcdGJWZfLZUlSsVh0rql7P8ViUYlEQplMRjMzMwoEAioWi0qn083cvrv2ZZqmc2/a8fO2tjZls1l99tlnmpmZceLAdnj81q1bGhgY0IkTJzQ+Pq5EIqGvv/5ad+7c0ebmphKJhB4/fqxEIuHEee3xVldX9bvf/U4LCwvK5XLOfbO9va0PP/xQDx48kCQlEgkNDw/r1KlTOnbsmHK5nJaWlnada/f19HtGvOfNHbFub29XtVrV5uamMpmMisWinj59qj/+8Y968uSJQqGQlpaWVCqVdPr0aQWDQWfbQqGgJ0+eqFgs6uTJk0omk5qentbW1pYSiYTS6bSGhoaUy+U0Pz+vZDKplpYWRSIRLS0tKZFIKJ/Pa2lpSX/84x/14MEDmabpxMu3t7ed5yWRSOjGjRtKJpMaHBxUpVJRMBhUIBBwnomOjg5NTEzozJkzWllZcc63fQ89fPhQT58+VTabVaFQkCTdunVLgUBAy8vL2tnZ0fT0tO7evSvLspROp5VMJrWzs+Pcp97nxL3G2+8nk0ndu3dPjx8/dkLQ1WpVa2trmp6elmEYKhQKzvMdCASUSCR05swZDQwMOBHxr7/+Wo8ePdLOzo46Ojr04MEDTU1NaWpqygl7JxIJPXjwQIVCQfF43DlvPT09CoVCevr06a411DRNZ/1w3xve2Hy1WtXOzo4eP34sScrn87IsSzs7O6pUKspkMiqVSiqXy5qZmdH8/LzzDNvrWDKZ1MrKigKBgGZnZzU7O6ve3l7n3GazWXV1dSkcDmt1ddU5H7XuXXtuAAAAAAAAAAAAAAAAAAAAAAAAAAAAz4vBP2YEAAAAAAAAAAAAAAAAAAAAAAAAAOD1ZRgG/1AQz50dwHWzfw+FQmppaXFixHb8U/r3YKhhGLuinaZpKhaL6dq1a2ptbdUXX3yhRCKhq1ev6o033tCvf/1rLS8vq1qtamBgQOPj4+rs7NTOzo5mZ2c1NzendDqtarWqQCCgcDisUCgky7Kc0Ggul1Mul3smiux3DLVYlqWWlha1trYqnU47oV/TNNXa2qqhoSGtrq4qlUopGAxqbGxM6XRaGxsbKpVKOnXqlM6cOSNJmpub08LCghPJLZVKu8aqNTfDMGSapnPe7HNpn0/7XJum6URc7VhqKBRSX1+fhoaGFA6HtbGxocXFRaVSKZVKJWd7e9tAIKBAICDTNFUul50Qs30O7W0Nw1AwGFQ0GlWxWHS2sd9z/+wXl/a+5o7lugUCAZ05c0b/8T/+R/X29urXv/61bt68qVQq5QSXa11bexy/gLW9b/fY7v34BWa927j/9l4Tv3nY18jmPnY3+zX7WnuPsdYYtYTDYY2Ojurq1avq6elROp3W3Nycnjx5opWVFeXz+Wf2b39mcHDQibKvrq5qe3vbidJLcu4L959AICDLsnaFum2WZSkYDDpjtbW1aWBgQKZpanV1Vevr6858/K5dvd/d1yESiejHP/6xWltbdf/+fc3OzjqhZvu+tSzLiT23t7fLNE1tbGw4IXP7PMRiMRWLRWWzWZVKJYVCIbW2tiocDqtUKjnPsmVZsixLxWJRuVxO5XLZeXZDoZAkOefEfs+es70eRqNRSd9GlXO5nAqFgizL0vHjx/XXf/3XKhaL+u///b9rfX39mVizZVnONbAsS7FYTJKcNdk+//bzac/Dfe39nk/3eXUHwm32uuPejx2Bj0QiGhwc1OjoqNra2pRMJrW6uqqlpSXnvMXjcbW0tCiZTO6KyBuGoWg0qng8rkAgoEKhoHK5rJaWFhmG4dwr7rXGDky71zXvc+leT/1ec3/O+91l79c+1/Y1DwaDCoVCMk1TxWLR+S6IRqO6c+eOEomEcw1qPbv5fN739VdRtVqt/8UJAAAAAAAAAAAAAAAAAAAAAAAAAABeOQSsAQAAAAAAAAAAAAAAAAAAAAAAAAB4jRGwxovgDVh747HuoKl7u3r/jjUYDKqtrU2GYSiVSjmx6tbWVk1PT6tQKOwKzgaDQScY647u+o1pR1prRYL9+AWU7bCpvT87bmqapizLUiAQcEKwdqi2Uqk4sVI7fl2pVJTJZJTNZnfFnuvNyx249cZU3cfqfd0dCZe+DTUHg0EFAgEnrmuP77e99zx4A7d+YVf359yhazuYK2lXcNe9P+/x2oFYwzDU0dGhn/3sZ7p48aKy2az+7u/+TrOzs869US9eXe+cel9zR7e9x+LlPl7vsTczjns/tfbvDXof5N+D2zHjzs5OtbW1qVAoaHNzUzs7OyoUCruup3uuwWBQkUhE0rcR5EKhUDcGXy/47X7NfR7sZ8geo1Qq7boOjfbnt41hGAoEAurp6VEgEFAymVQmk6kZVbfvNXcAudYzYH/eXhPc77mfaff2tc6TO/ps/+6OKNvz6O7u1g9+8ANdunRJn376qb744gvn/nefK/ca7D1O77PnDaO75+V9Rt2fqXW+vdfGvT4EAgFFo1GFQiEVCoVd91KlUnGuv19M3h2Wdv9erVadILk79u6+ft7n1H3eaz27fq+73zdN0zc+7t7Ojri3tbUpEAhoc3PTCW3Xun+r1aoTU38dELAGAAAAAAAAAAAAAAAAAAAAAAAAAOD1E3jZEwAAAAAAAAAAAAAAAAAAAAAAAAAAAMDrxR0ErRd7db/vDshKUrlc1vb29q7tV1ZWtLq66gRaJalQKDhxT3cE1B0b9Y5ZK4Lb6Jj8jsUOlnrHsMPV9nvlclm5XG7XvtLptDKZjBObbTam7Z2DNy5bK7DsF5EtlUoqlUrPRL39xvHbh6RdwV6/ebkD0N7P19uv3/j28YXDYfX396uvr0/lclkzMzPa3NxUuVzed9DZ757dy75q3dt+/O4Zv0ivX4S83jXeq2q1qmw2q3w+r7W1tWfiv97rY88tn8+rWCw+E0H27tvvs/Xm4v67Uqk4Y9R7NuqdZ7/9l8tlra+vPxOed29nh5DL5bKkb+9xe1vLsp75jB0qdn/Gba9rjnd7O77snmMwGFR7e7tisZhmZ2c1OTmpYrFY99il3dFmvzXB/Z43au0OUnuj6+5xaj1D7mtcqVRULpd3XWP3OmSfB+9cvM+G37G6X3dHx71B6kbqPaP2nN1hce8zbI/tnnulUtHW1pZzr3i/++zP2PfgQZ9xAAAAAAAAAAAAAAAAAAAAAAAAAACARghYAwAAAAAAAAAAAAAAAAAAAAAAAAAAoKZm47Fu3sipX6DTHZZ1x0Dt7WuFUmtFq/3ipwdRK8pbL9jtHdsdim0UcHbzO29+wdh64V9v1NUb8nUHWu191goQe+Oy3u0aHU+9YLXfMVerVbW0tGh0dFTt7e3a3t7WN998o3Q67RsK3mvs2RsrrxcC9xun2TFqXadmI8CHwX6u7Jhwrf177zX7nvFeFz/u+6FR1LvWHP325X2/USDbvb1fZNq9L+894H4+mnmmvfNtZo617tNaa0q1WlU6ndbU1JRyuZw2Nzd9Q+LuzzSKgft9zht/rnUv2sHlWnP1Hod7Xff7Tqj1XPjNz29fzRyTe0y/Y/K+7nd8fmuOd010/27fS95wdb1jBAAAAAAAAAAAAAAAAAAAAAAAAAAAeJ4IWAMAAAAAAAAAAAAAAAAAAAAAAAAAAKAm0zSfiR27eeOdUu3otPs1P83Ek+vFsQ8asfaLsDYzz1rj2gHgvcyjUYy51vloNM/9RKa97/uFe2sdnzeObb/m/rtW9Nc0TXV0dGhkZEShUEgPHz7U/Py8isVi0/NtpJngcjOfd+/D75i9Pzeaw37v3Wbn6vcM2fzORbPzsNcIv/HqhZv3cpzNBLS929a6vn5RYvtz3nB3o+391sD98B5DqVTS5uamdnZ2VC6XVSwW9/TM13vNG+/2vtdoP37HXOsc1Juve+xGa0m9tb/WOH7PpnfbWt9v3mvb6PrWipzXWhPsyHqtewsAAAAAAAAAAAAAAAAAAAAAAAAAAOCwELAGAAAAAAAAAAAAAAAAAAAAAAAAAABATfXis27uuKg3Blor/FkvgOy37xehXoi2XsDUGymtFSKuF1mtF6d1R1SbjdTu5f292mto2b29NyrrjcQahqFIJKJ4PK61tTVNTk5qZ2en4fnZ73H4BaTd83P/3kij+7nR/mrFeveqVti9VkS61jnYz3h+79UKG/vNZz9ha7/5H/Tc1YozN/NM+23v93ujNSWfz6tQKDxzX/jNtVGoutm51+KNTdeas/1+vfNnv2/vs1bE3X1c7m2bXQP38tpe7/u9rEX1XnuR328AAAAAAAAAAAAAAAAAAAAAAAAAAOD7iYA1AAAAAAAAAAAAAAAAAAAAAAAAAAAA9sQbIfa+Z/MGW70R5nphV78x/bhjpocZAt1L/LbZWHC9z/vFXb37do/hd+5qRcYrlcozx+Mew/t+vYize47u8HS9Y3LPxR6v3raVSkXb29t6/Pix1tbWNDc3p2KxuCt27f18s2odz17tN45cTzP3+EH2s9dwb7NRa784ea397NVewtr14vP2vmrFwd0h71oB5Waugfd81vrZO/5+91lvP43i2Hv9TK1ta61RfuuUX7DavQ+/7wy/57XW9t79NcN7fWutW7Xi74326/2MdywC1gAAAAAAAAAAAAAAAAAAAAAAAAAA4Hkz+AeNAAAAAAAAAAAAAAAAAAAAAAAAAAC8vgzD4B8K4rkKBAIyTVOSf8CzXjzVHYz1hpklqVwu7wph+wVEm43GusetF1z2m2ejcfziz/Zn/GLe9WKqtcKtpmk2PQe/89NMENX9Ofc1rRXHbSaMWy8k6w0G13rNft2ekyRFIhHF43Gl02nl83mVy2XfMfcSCnd/5qC8+2kUHbc1cy/4jdVov82O0cx+/eL0+z0mv+3q3T/NbOvHu35415pmni1vSL7e/Os9b+6x3Wtcvc82un/q3RveOLT3uNzHtpd1rta4zZzbWvNyr3c2+333a80+J3t9NurxXota3yt7OU/NfKZQKBx47i9StVrdf5EeAAAAAAAAAAAAAAAAAAAAAAAAAAC8FIGXPQEAAAAAAAAAAAAAAAAAAAAAAAAAAAC8ukzT3Hf01xtX9v5sR5v3Epzey7iNXqv3+n7tZX/ube2Ia6OosHvbg4xfqVR8I61++2smtOyd/17m4jduPp93wq71rt1+rl+t6PBB7gXvPd5M/LvW5w86r3oR6f18plHM2T3HWsdeK1reKAbczLH7BbdrjVsvTFxvvFrb+F13v3Ngx5nt5847vv2n2Thyvfe9Mey9nEPvz97P2sfhF4+vd5/4rfGNjsPvfPpdu1qBcL/f/cZ0ny+/tc77fjPH0qzD/v4BAAAAAAAAAAAAAAAAAAAAAAAAAADwQ8AaAAAAAAAAAAAAAAAAAAAAAAAAAAAANdWLw3oDtM2Go2tFkf32VStG6g7out87rCBoMxHgRmHnWjHbg2gU2G00ljcGa/+xY+I299zt7b3xXbf9hJnd3KF095z85txo37V4x9xrbLtRFLhexNovFN7MmC8icNtMRPqg585vnHqR9r3wixjbr9cKtPs9L3udT701xxv43uv79fbdTOS62fB8rXFqhZ/rxbsb3QfNzMfv9VrPSzPP4V7sdW2rF8eudY3qBbkBAAAAAAAAAAAAAAAAAAAAAAAAAACeFwLWAAAAAAAAAAAAAAAAAAAAAAAAAAAA8OWNbXqjm3Z81f17owhsrQC13+frBVfd4VXva37b70ej6HAzsWi/3+tFwb0ahZubOT5vpNYvbuuOU3tD4c3GnfcasK01vpt3/EZB4nr87uVmP1tvu3r3uN95OUi0tl4QfS/3eqOYs/t178+NQr/NxtT3o9ExuqPn3s/5xZrrzbXRuXb/Xeve8gaq/eZXK2bc7Hpa67Vmn12vRqHrva6pzYShmwmB27/XWhNrrav1YtG11nX7d9M0nW3c1857XWs9843WAgAAAAAAAAAAAAAAAAAAAAAAAAAAgBeBgDUAAAAAAAAAAAAAAAAAAAAAAAAAAAB8+YVHa4V//YKdze7Hb3/u17yxUHeMtlKpPBMHfR7hvo8gbwABAABJREFUXPf89hMj9Yut1ptvrf03GrNW0LbefmptX+s8NhPf9X7eL1DrF6eVdodim4nw7jUKWy+4vlfNxHkPun+/83bQiHW9Z83ej9++/T570GN1P8+1xml2jFpRY+97teZRa19+43jPlX0c3hh7MxHqesdRbw7u/R12HNm7/3rrVDPR6Hr3Zr3vg0b3f63takW86z0/tebmXYvs7x733N3v2WtYrXnVeg8AAAAAAAAAAAAAAAAAAAAAAAAAAOB5IGANAAAAAAAAAAAAAAAAAAAAAAAAAACAPakX//RGSt1xWr+YaKN9NYpf1wqFuuOrew2G1oqx1tt2vxFl7778QuB7iSTXOtZGwdaDhI/dr7tjt6Zp7gq9NjPWYUSlm7Wfcbzz87s+9nHX+kwz94w32N5snP0g526/IWr3OWj2+aoVM28U0fb7fKPId73Acb1xvPvxe8/7e63j8s612XPtd17d47jvtXqB6Vr7208ou97PtY7X7/393G/e+ftd+72EyGvN0/1Z+3rV2493rau3LtQ6HwAAAAAAAAAAAAAAAAAAAAAAAAAAAM8LAWsAAAAAAAAAAAAAAAAAAAAAAAAAAAD4Mk3TNwbqDb/uJSC6l2hpvShuvQB0o4hqo3k2G1euFRn2m2Ozc2ikXrT6eYRRG8V9veNUKpW6wfJmxqoVQLff229o2X3fNprXQSLbjSLGzWj0zDS63/bDe26buX/rRaHr3e/1wsaNxqw3h0aB9VrzabSG1ZuLX+C53rb7febdMWW/eZum+cz4e7lHmomjNxvzdr/ezLNWbx/1vk/81oq9xNTd+693bPXm5h7P7x6wr4t7TdzrHAEAAAAAAAAAAAAAAAAAAAAAAAAAAA6CgDUAAAAAAAAAAAAAAAAAAAAAAAAAAAB8uYOo0r8HOv3iqO6wqt/77tCn33ve12r9bm9rmqYqlcq+j82rmciqZVmqVCpOpDkQCMgwDJXL5YYR3b2GeN3j+v1uH/t+4tXu4K7f5/xCrnsJrXrvk0b72ksM2r3/56nZ6G4zGkWS/ULR3mvRaLxmY8/15mO/Vuv614une7dtZrtawfl6+/Hur9l7vdZ79Y73IPttFEPey/3T7PNirwmmacowjLrrY73YdqP1q9Z1896zfvex3/iN5tDss1jvnHq/y2yVSuWZ6+H+HqtWq853jd/x2d8FfsdVL0JfKzAOAAAAAAAAAAAAAAAAAAAAAAAAAADwPBj8o0YAAAAAAAAAAAAAAAAAAAAAAAAAAF5fhmHwDwXx3IRCoYbb2KFPd1C5UaxUqh839b5faxu/zzS7vV+Qtdacg8Ggjhw5ov/8n/+z7ty5o08++UQdHR365S9/KUn67W9/q8XFRZXL5V1zr3d89ebzfbTXa+3e9rty7vr7+/Xzn/9cW1tb+uijj5TJZF72lPasUZj4u6zRPfxdulfraTYu7veZvX7O/dlaYW13kLrW5y3LUjAYVKVScb7L3NHqQqHwvbh2zahWq80v0AAAAAAAAAAAAAAAAAAAAAAAAAAA4JUQeNkTAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKupUVTUHQ41TdM3XForaOuNO1er1V3b7iViXG/eXs2Ekr3ziEQiOn36tKLRqCYnJ9XX1+fEq3/zm99ocXFRpVKp7jnye73RXOrtr9mYqvc8v6oR3XrX7KBz3k9Q92XY3NzUb3/7W+VyudcyXu31qp/vw0S8ere9Hqu9/u83Xm3vw+/z9fbpXhuKxeIz+3pd1g4AAAAAAAAAAAAAAAAAAAAAAAAAAIB6CFgDAAAAAAAAAAAAAAAAAAAAAAAAAADgGXZM1BtjbfR7vdCnOwraKFDtDYc2Ezc9SPS6llAopKGhIY2Pj2tyclJtbW168803lUwm9dFHH2lhYUGVSmXP8/GLozaKpTaKPHs/693Pqx6x9vLeJ3s5L95z6rf9q3YOisWiNjY2XvY09sx9P71q5/RFabT2fN/OS7NrTDPPdz3u57zWmH7vuddCv/ft76pqtVpzfQcAAAAAAAAAAAAAAAAAAAAAAAAAAHhdELAGAAAAAAAAAAAAAAAAAAAAAAAAAACAL3dw2ssdF3bHa72R0HpBZa9KpVIzBLuXuGmteLFfwNQ7V/frgUBAXV1dOn36tILBoIrFot566y3t7Ozoj3/8o1ZXV1Uul5ueV6151vrdO79629UKt+5ljFeN937y8gtR17rmBw3lft80G/l+3aLoeP72ulbXi8w3u79G+2m0DvpFqrmfAQAAAAAAAAAAAAAAAAAAAAAAAADAdwUBawAAAAAAAAAAAAAAAAAAAAAAAAAAADzDNE3fOK07FNpsWNR20Mit+7Omafq+7v25mcix3/uGYSgWi+n48eM6deqUwuGw+vr6tLq6qs8//1xra2t7jlc3c/zu4HKjeTY75n4/+6prNuRd73XU5j1nfs+S33PV6DXAVmtNtNfuvXx/eCPUfuun3zjuv5t9DwAAAAAAAAAAAAAAAAAAAAAAAAAA4HVCwBoAAAAAAAAAAAAAAAAAAAAAAAAAAADPqBVQttWKhXpj1377bfReo/BorTGaCT43G9QNhUIaHBzU+fPn1d/fr2QyqZmZGd28eVPr6+sql8uqVqtNRZTdYzaab619HJZmx/++Omhk/btiL3Hww/jcdw3P2cF575u93kf1vmOa2R/xdQAAAAAAAAAAAAAAAAAAAAAAAAAA8F1hvuwJAAAAAAAAAAAAAAAAAAAAAAAAAADwXWUYxqhhGB8ahnHfMIx7hmH8n/78epdhGL83DGPyz393/vl1wzCM/6dhGI8Nw7htGMaVl3sE+D6rFfqsFWOtVqu+79kh7L2EQ+vNyTtGo9C23zxrje8OaLe1tenMmTM6cuSIcrmcbt68qRs3bmh9fV3FYvGZgLd7/7XG9Auyet8jdvtyEavdP87dv+M5bs5+otQHuc9qrcU2v++rWms9AAAAAAAAAAAAAAAAAAAAAAAAAADA64KANQAAAAAAAAAAAAAAAAAAAAAAAAAAz09J0v+lWq2ek/S2pP/ZMIxzkv6vkv5YrVbHJf3xz79L0q8kjf/5z3+V9P968VMGvlWtVlWpVFSpVHYFP2vFlusFW/1CzbXY+wmHw4pEIrIs65l919rPYQV0w+GwRkdHdebMGVUqFV2/fl03b97UxsaG8vn8M+ek3rEcNLj9vLwKc8B316t87zcrHo8rGo3KNPf3T/Jft+N9UV6l89JoHkTZAQAAAAAAAAAAAAAAAAAAAAAAAADAdwEBawAAAAAAAAAAAAAAAAAAAAAAAAAAnpNqtbpUrVZv/PnnlKQHkoYl/UdJ/+ufN/tfJf2nP//8HyX9f6rf+kxSh2EYgy921sC/aybeacdI/QLVe4mU2vsxDEORSESXLl3SxMSEWltbdwVkDzso6h7X/r2rq0tnz57V4OCgFhcXdfPmTa2vr6tYLO45vOqdbzPh6+fpVYrH4rvLuw68bvdcKBTStWvXdOHCBUUikZrzf9nP8+voIOfsed5L9n698+P6AgAAAAAAAAAAAAAAAAAAAAAAAACA1x0BawAAAAAAAAAAAAAAAAAAAAAAAAAAXgDDMMYkXZb0uaT+arW69Oe3liX1//nnYUlzro/N//k14KXyi4a6Y5+VSmVf8Wq/fQaDQR07dkxXrlxRb2+vTNNUpVJpOJ/DEg6HNTAwoKNHj2p7e1vXr1/X6uqqisWic5x+c/eb217Cp36fed2iv/h+aibu7P75dQhaB4NBdXZ2anh4WKFQqO629vFEo1EdOXJEAwMDvtsFAgGZJv+8/2Wzr1eje/B1uE8BAAAAAAAAAAAAAAAAAAAAAAAAAACaEXjZEwAAAAAAAAAAAAAAAAAAAAAAAAAA4LvOMIy4pP8h6f9crVaT7iBitVqtGobRfOX22/39V0n/9XBnCfw7b7izWq3u+r2ZqKc33uz93TCMZ14zTVM9PT1644031NraqkQioUKh4IxvmqYTgC2VSrviuPvljuoGAgF1d3fr6NGjsixLt2/f1uPHj5XP53fFqxsdbzNh1EZzfpXCqUS10Ui9e7rW6808B3txmPdppVLR/Py8Ojo6FAgEas7VXpdisZiOHj2qkydPam5uTisrK842lmWpp6dHfX19Wl5e1tra2qEe93fRXtbIvZxL733hd5+wxgEAAAAAAAAAAAAAAAAAAAAAAAAAgO8aAtYAAAAAAAAAAAAAAAAAAAAAAAAAADxHhmEE9W28+m+r1er/988vrxiGMVitVpcMwxiUtPrn1xckjbo+PvLn13apVqv/i6T/5c/7p4KJF8KOhNoBafdrjWKjzQRGTdNUS0uLTp48qSNHjmh+fl7z8/PK5XKSpGAwqM7OTrW3tyubzWp1dVX5fP4gh/TM+O3t7Tp58qRGRka0uLioO3fuKJVKqVqt7imS2mjbZkK/BG7xXWTH6G37iRB7WZYlwzB2Re0PqlAo6MmTJ2ppaVEul6u5X3vdOnr0qC5duqRYLKapqSlJ3x5TIBBQf3+/Ll++rI6ODuVyOW1sbKhcLh/KPL+rmrmO+7nWe42csw4DAAAAAAAAAAAAAAAAAAAAAAAAAIDvArPxJgAAAAAAAAAAAAAAAAAAAAAAAAAAYD+Mb+uI/29JD6rV6v/D9db/T9L/9Oef/ydJv3a9/r83vvW2pO1qtbr0wiYM/Fm9sKcdc/b+aSYGWm+8cDissbExnTlzRjs7O3rw4IETerUsS52dnTp9+rTOnDmjnp4eBQKBhvt0//F7z/17JBLRyMiITpw4IUl69OiRlpaWVKlUnG38PntYmgml1hrXLwh8WHMi4PpyGYaxKxr/Kmr2PnHHqg8r1t7S0qKxsTEdOXJEsVjsQPe/e17lclmbm5taWFhQJpPxnaNhGIpGozpy5IguX76so0ePKplMan19XdK3ceuuri6dO3dOZ8+elWVZNfeFl6PRteBaAQAAAAAAAAAAAAAAAAAAAAAAAACA74L6/zIfAAAAAAAAAAAAAAAAAAAAAAAAAAAcxI8k/e8k3TEM49afX/u/Sfq/S/rvhmH8HyXNSvovf37vHyX9taTHkjKS/g8vdLZAE+oFPQ3DqBl6rfU5wzBkWZb6+/t1+fJlxeNx3bp1S7OzsyoUCrIsS62trTpx4oSOHTumdDqtTCajcrnccD613ne/ZgdvW1tbNTg4qGAwqCdPnmhqakrZbNZ321fZYQZX3dftdTj27xrLstTX1yfLsrS+vq5cLveyp3Qg3nvzIOF7wzAUDAZ18uRJnTt3TvPz89ra2lIul3Oi8wdVLpeddcZPKBTS4OCgLl26pJMnTyqZTGpqakrb29syDEPxeFzHjx/XuXPnZFmWnjx5ou3t7WeO40VFkl/VtcwwDOc8HNa5qHdeTdOUZVmSpEql8sy4djD+MOcDAAAAAAAAAAAAAAAAAAAAAAAAAADwMhGwBgAAAAAAAAAAAAAAAAAAAAAAAADgOalWqx9LqlWJ/LnP9lVJ//NznRTQhGbjpnuJoLojpe7XTNNUZ2enLl26pMHBQT148EDffPONUqmUJCkWi+nkyZM6c+aMKpWKnj59qpWVFRWLRd9I6X7CrPbcUqmUHj58qOnpaW1sbDghXDu06x7LHd99XtFoL78A7WFGVv32/yqFbr9P7Hj1tWvXZBiGPv744+cWsA4Gg6pWqyqVSg23fZHB5XpM09TQ0JCuXbumWCymR48eKZ/PH1q8upnxu7u7df78eY2Pj6tUKun+/ft6+vSpisWigsGghoaGND4+rvb2dj148EDT09PONXwea4fbqxqr9tPe3q54PK5UKqWdnZ260fBm+Z1XwzAUCoXU0dGh9vZ2FQoFra+vK5vNPrO219sPAAAAAAAAAAAAAAAAAAAAAAAAAADA64aANQAAAAAAAAAAAAAAAAAAAAAAAAAAAJriDaE2G7P1xpDtz5imqdbWVl26dEnnzp3T9PS0bty4ofX1dVUqFQWDQY2OjurSpUuKRCK6e/eunjx5op2dnUMN1VarVSUSCd2/f1+VSkW5XE7FYnFXHNr9914C33s5P3ud82F6FUKtzzvq+7qwLEs9PT26fPmyfvCDH+jp06eHEvX1E4/HNTIyolQqpeXl5Ybj1Ls2e41bu9eFZj9XrVadePQPf/hDjYyM6LPPPtPMzMyBA997ea7j8bhOnDihM2fOqFKp6ObNm/r666+VSCRkmqa6uro0Pj6urq4uLS0t6euvv9ba2tpzu4578SoFrQ3D0MjIiM6ePaupqSlNTk5qZ2fn0NcAwzAUiUQ0PDyss2fPamBgQPPz87p58+Yz94099qsSawcAAAAAAAAAAAAAAAAAAAAAAAAAADgo82VPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK8OwzBkmuYzr0nPxmvtwLP7j/dz7lhqpVLZFQcNh8MaHx/X22+/rWQyqc8++0wrKysqFosyTVM9PT1688031dHRocnJST148ECJREKlUqnmeN65eefgnZv9J5/PK5FIKJVKqVQqPXO83vHc+3Tvx3t+muEXysb3UzAYVG9vry5fvuyE26emprSzs3Oo4xiGoZaWFl28eFF/8zd/o2PHjsmyrBcWN671zDQjFovphz/8oa5cuaL79+/r+vXr2traOtSofT3RaFRjY2M6f/68wuGw7t69q+vXr2t9fV3ValWtra06efKkTpw4IUn68ssv9fTpUxWLRd9163kyDEOhUEixWEzhcPiVilfbTNNUa2urBgcH1dLS8sz3z0EZhqFAIKDh4WFdu3ZNP/jBD9TV1aVsNqtMJlPzerAWAwAAAAAAAAAAAAAAAAAAAAAAAACA74rAy54AAAAAAAAAAAAAAAAAAAAAAAAAAAAAXj3eGLSfeoHPRtHoSCSi48eP67333lOpVNKHH36opaUllctlBQIBdXZ26sqVKxoZGdHt27f19ddfa2NjQ+VyeU/zsiPWteZmz6deiNv9GXfM+7ADpy8zmPoqhG1rBcK9730X2aHhgYEBXblyRefPn1c0GtX9+/f11VdfqVgsHtpYlmWptbVVFy5c0E9/+lMFg0Gtrq46geX9zr/Zz7qfIfffjZimqUgkovPnz+u9997T5OSkPvzwQ62vr7/QePXx48f11ltvqbu7W3fv3tUXX3yhra0tGYaheDyu8fFxXbhwQbFYTNevX9fk5KRvvPp5PnP2utbS0qKRkRF1dHRoaWlJ8/Pzu9bQV8H8/LwqlYri8fi+o+a12M9Vb2+vrl69qvPnzyuZTOqrr77SgwcPlM1mne283xvf9TUHAAAAAAAAAAAAAAAAAAAAAAAAAAB8fxCwBgAAAAAAAAAAAAAAAAAAAAAAAAAAgMMdmZZ06GFY0zSdyOt7772ncDis3/72t3ry5IkqlYqCwaC6urr05ptv6tSpU7p//75u3LihjY2NZ+biDeHWYr/vjZSapun7+Xr722t0d6/2EgJ+FfbbDPf53+tnDlOz98vz5o0YG4ahaDSqoaEhXb58WefOnZNlWZqcnNQHH3ygZDJ5KOMZhqFgMKju7m5duXJFV69eVTAY1B/+8AfNzMwc6LzU+qz7mtd6dtz3pt/2hmHINE3FYjGdPn1av/jFLzQ3N6ff/OY3hxqvbnR/RKNRnTp1Su+99566u7t1+/Ztff7559rY2HDeHxsb0w9+8AO1trbq/v37unnzpgqFQt0xD3o/+p07y7LU0dGhiYkJvfHGG8rn89rZ2an7DBqGIcuyZJqmyuXycw9d2/NOpVKanJxUMBhUuVw+8PV0H2MkEtHo6KjeeecdnT59WisrK/rss880OTmpnZ0dJ1T9stcEAAAAAAAAAAAAAAAAAAAAAAAAAACA54mANQAAAAAAAAAAAAAAAAAAAAAAAAAAAJ5RrVafiZ3W+t0vSOv3s2maamtr0+nTp/XDH/5Q0WhUH330kR4+fKhisSjLstTX16erV6/q1KlTmpqa0s2bN7WxsaFyudxUJLfevNwBXTsc640J1zsfftvsJ878ffIqhGFN01QoFFIsFlO5XNbOzo4T5/W7z1/03FpaWnTs2DFduXJFx48fV7FY1I0bN/T5559rdXX10MYKBoMaHBzUlStXnEj2559/rq+++krFYvHQxvHT6D7wuwb2a5ZlqbW1VRMTE3r33Xe1ubmpDz74QKurq4d2f4XDYUWjUZVKJaXT6Wf2G41GNT4+rh//+Mfq7+/XnTt3dOPGDW1ubjrvHz16VNeuXdPo6KgmJyd148YNJRIJJ8jsXZcO+96z9xcKhTQ4OKg333xTFy5cUKlU0qNHj7S2tibp23vOG4kOBoNqa2vT8PCw2tvbNTc3p9nZ2ef+/FarVefes0PfBxnTDsJL317TEydO6Kc//amGh4f16NEjffnll5qfn1cmk1GlUlGlUqk53quwdgEAAAAAAAAAAAAAAAAAAAAAAAAAABwGAtYAAAAAAAAAAAAAAAAAAAAAAAAAAADYxR1Y9b5uB0Ld8Wf7d+92bsFgUJ2dnTp37pzeeusttbW16fPPP9fDhw9VKpUUCoU0MDCgd955R6dOndLDhw/1xRdfaGVlRcVicV8xUe+8/I6xEb/tar12GDFav30HAgFVq9W6sVX4C4VC6unp0enTpzU2NqaVlRV98cUX2tjYeG4h4WaZpqlYLKYTJ07o6tWrOn78uBKJhL744gvdunVLqVTKiQ0fZI6GYSgYDGpoaEhXr17VuXPnVCgU9Mknn+jzzz/Xzs7OIR/Zv2s0b/cz6redZVnq7OzUtWvX9Pbbb2txcVEffPCB5ubmnAi5e1tJe3pODMNQNBrVxMSETpw4oQcPHuju3bsqlUrONqFQSKdOndLPfvYzdXV16datW/ryyy+dgHYwGNTAwICuXr2qU6dOaWpqSh9//LFWVlZULpefWU8P+15z7y8Wi2l8fFxvv/22jh07po2NDX355Zd6+PChDMPQ2NiYcrmc1tbWlM/nZRiGIpGIRkdHdfXqVU1MTCiZTOqDDz7Q7Oyss1/TNGUYxqGuQe7vkXpr9X5EIhGdO3dO77//vmKxmD755BPdunVLm5ubKhaLznHUG5O1FgAAAAAAAAAAAAAAAAAAAAAAAAAAfFcQsAYAAAAAAAAAAAAAAAAAAAAAAAAAAICjUVzVHaStt617u2AwqP7+fl2+fFkXL15Ua2urHjx4oDt37mhnZ0fBYFCjo6P66U9/qomJCT169Ei3bt3S6uqqisXirnG8sdNgMKhIJCLLspTJZFQoFJ6Zm1+I1Dt3+3dviLvZc/O8Asg9PT0aHh5WqVTS6uqqtre39xz0fhlx5lpj+53nep/db0TWNE21trbq5MmTOnXqlNra2tTW1qZwOKxHjx5pc3PzpQVq7Qh8a2urJiYm9N5772lgYECPHz/W9evXtb6+rtHRUYVCIS0vL2t5eVnFYnHf44XDYQ0PD+vKlSs6f/68JOmLL77QF198cejx6lrPkfdaNnNPWpal7u5uvfvuu3rnnXc0PT2t3/3ud5qfn98VrzYMQ11dXRofH1cmk9Hs7KxSqZQqlUrdeRqGofb2dl25ckXvvPOOVldXtbW1pUql4swvFArp7Nmz+vnPf654PK7PP/9cN2/e1Pr6usrlsizLUl9fn95++22dP39e8/Pz+vjjjzU3N6dSqbRrX8+TaZrq6OjQ1atXdfXqVcViMU1NTenmzZt6+vSpWltbde7cObW2turRo0fa2tpSqVRSe3u7zp0756zLlUpFS0tLWltbc85TS0uLjhw5ora2NiWTSS0tLSmZTD4TEN8Pv3PjvVeaibe7v5Oi0aiuXLmiX/ziFyqXy/rXf/1X3bt3T9vb2yqVSg3D1QAAAAAAAAAAAAAAAAAAAAAAAAAAAN81BKwBAAAAAAAAAAAAAAAAAAAAAAAAAAAg6d+jro14g7S1Qs+GYSgSiWh4eFg/+MEPNDY2JsMwtLS0pFu3bmltbU2BQEAnT57UT37yE505c0abm5v68ssvtbCwsCva6x3DNE1Fo1GNjY1pYmJChmHoyy+/1NOnT1UqlZzxm4lXu4/JO0a9zxuG8Uwk9yDRZb8xQqGQDMNQZ2enqtWqCoWCE2Ft1qsUa20mRuvedj/sYPrFixfV29urmZkZPXnyRO+++67W19e1sbHh7PtlxL1N01RXV5euXbum9957T7FYTI8ePdLS0pKOHTumCxcuqKWlRZ2dnZqZmdEHH3yg5eXlfY0ViUQ0Njamq1ev6vTp0yoUCvrnf/5n3bp1S+l0+pCPrP797w3f17u+lmWpv79fP/vZz/T222/r/v37+od/+AfNz887z7e93fDwsN5//30NDg7q008/1dOnTxveO+FwWCMjI3r33Xd16dIlPX78WL///e+1uLjofNYOIf/qV79StVrVv/zLv+j27dva3t5WpVJRIBBQf3+/rl27pomJCc3OzuoPf/iDZmZmlM/nnbHqzeUwns1AIKAjR47oRz/6ka5cuaJsNquvv/5at27d0tbWlkZGRnT16lW1trbq3r17mp+fl2EYOnHihC5duqTh4WEtLy8rkUhodHRU33zzjRKJhMLhsI4cOaLTp09rZGREHR0d2tzc1CeffKJcLqdcLvfc1hb7PnJ/xzTzrLa2tuqdd97RL37xC62vr+sPf/iDJicnlU6nn4mee+fujWa/SusmAAAAAAAAAAAAAAAAAAAAAAAAAADAQRCwBgAAAAAAAAAAAAAAAAAAAAAAAAAAgKTd0c56sVB7O3eQ1h37NAxDlmUpGo06Qd54PK6FhQUNDQ3pzp07mp2dVSAQ0MTEhK5du6Z4PK5KpaLPP/9cs7OzamlpkWmaymQyKpVKu8YwDMMJ0L755ps6efKkcrmcbty4sWsb9x/TNCXpmeC0e87ValWmaSoej6unp0fValVLS0vK5/NNx0wPGj01TVOmaapcLqtarWpxcVFLS0sKh8OSpEKhUPMYvu8Mw1AwGNSRI0d07do1WZal69evK5FI6Be/+IUk6csvv1QymTzUcZuNYdv37djYmH7yk5/o0qVLSqVSevTokaLRqE6cOKH79+/r/v37amtr01/+5V+qp6dH5XJ5X2H0eDyuiYkJ/exnP9Po6Ki2trb0u9/9Trdv31ahUNDg4KAikYgWFxf3dI/XU6lUagbi7XNQrVYVCoUUjUZlGIay2eyu8YPBoIaHh/XLX/5SV65c0Z/+9Cf9/ve/1+rq6q79W5alEydO6D/9p/+k/v5+/eEPf9C9e/eUSqVqhudN01RnZ6feeOMN/fznP1csFtO//Mu/6E9/+pM2Nzedc93R0aEf/ehH+uu//mulUin95je/0b1795ROp1WpVGSaphPOvnz5siYnJ/VP//RPmp+fd47FXiP95tLMuW4mBh4KhTQxMaH3339fHR0dKpfLunv3rq5fv65kMqmJiQm9++67isVi+vLLL3Xnzh1J0ptvvqmLFy+qWCzqyy+/VCwW05kzZ3Tjxg198803CoVC6u7u1ujoqAqFglZWVtTb26tcLqdkMqlisdh0mLuZ8LRlWQqFQrIsS6VSSYVC4Zlotd/5sN83TVM9PT361a9+pXfffVcPHz7UBx98oNnZWWdf7nkRpwYAAAAAAAAAAAAAAAAAAAAAAAAAAN8nBKwBAAAAAAAAAAAAAAAAAAAAAAAAAAAgaXf02e89mzsC6o5Y20zTVGtrq86ePauJiQlls1lNTk7q7NmzWl9f14MHDxSJRHTlyhVduXJFT5480cjIiJ4+farp6Wm99dZbOnbsmD788EM9evTICVjbYwSDQQ0MDOjYsWMKBoNKJpPa3NzU8vKyE7i1/wSDQfX29urUqVN6/PixlpaWfAPQ9rF0dXXpzTff1KVLl/TkyRN98MEHzrju6KlftLjZKGqtoKtlWRobG1N7e7vu3r2rfD7vvOf+2X2epcZR7uet1jiN4r1+4XM/jSK+tnA4rJMnT+rNN99UPp/XJ598Ikl6//33NT4+rr/927/VwsKCKpWK7z5N01Q0GlU4HFY+n1cul1O5XK5x1LXn4ceyLLW3t+vq1at6//331dfXp4WFBW1vb6uzs1PLy8u6ceOGNjY2dOLECf3oRz9SOp3Wb37zGyUSiV3jGIZRN2JuB5jffvtt/epXv1JPT4/u37+vv//7v9eDBw9UqVQ0MjKiv/qrv1KxWNTf/u3fNpz/XjS65/r7+/X222/r6NGjymQy+vTTT53nPBAI6Pjx4/rVr36lixcv6ve//73+4R/+Qel0etd9EwwGde3aNf3N3/yNWltb9fd///daXFxUd3e3MpmMstnsM/OIRCI6fvy43n33XV2+fFmFQkH/2//2v+nLL79UPp93wtQDAwP6q7/6K/3sZz9TIpHQ//gf/0MPHjxQLpeTJAUCAR07dky//OUvdfHiRd2/f1//+I//qLm5OSfs7BdabnRevNs02r6trU3Xrl3TO++8o2QyqXw+r8nJSf3pT3+SJP3/2bvT50buA7//HzQAAiBB8L7v+5jh3Jdk2bI39nqrktrsgyR/QP635EEqlVQ26/x2vV55rZFGGmkOzsVrhjcJniBBkABx4/fA1b3NngaJGUuWZL1fVVNDNrq//e1vN1p6MvX++OOPde/ePQUCAX3++ed6+vSpAoGA7t69q5GREa2vr+vRo0fy+/2anJzU5uamHj9+rEgkooGBARWLRa2srKi7u1v37t3T/v6+/vCHP2h7e9sKfUtSKBRSXV2dqqqqdHJyoqOjI+VyOeuazL9ra2sl6a2AfDAY1PDwsMbGxlRXV6f5+XnNzMzo+PhYxWLRetbLheL9fr8GBgb0t3/7t7p586bu37+v3/zmN9rd3VWhUDgzxkXrX8m6AwAAAAAAAAAAAAAAAAAAAAAAAAAA/NAQsAYAAAAAAAAAAAAAAAAAAAAAAAAAAIClkhhvuX0Mw5Df71dra6suXbqkrq4u7e7uKhqNanBwUOFwWC9evFBnZ6euXLmijo4OPXnyRD6fT/X19Xr+/Lnu3Lmj4eFhZbNZ+f1+K9JsqqqqUmdnp3p6ehQIBOTxeHR6empFaA3DsAKkPp9PIyMj+uUvf6lQKKS1tTUrbG0GTT0ej3WOmpoajY+P69q1a/J4PFpeXlY2my27DuWCqua2clFnN8FgUGNjY/r1r3+ttbU1zc3NWee2H+PxeFRVVaW6ujqFw2Gl02nFYjGl0+l3ikhLf7xfVVVV8nq9KhQKymazF4ZeKw3xVldXKxKJqFgs6ujoSJlM5sL5VRKzdjveMAyFw2FdunRJly9f1vHxsZ4/f66Wlhbdu3dPtbW1+l//63/pzZs3b12fuZ4tLS0aHh7WpUuX1NDQoJmZGX3xxRfa3t6uKGhrRpWbmprU1dWl/f19ra+vq1QqKRQKaWRkRD//+c81OTmpfD6vlZUV5XI5ZTIZPXv2TAcHB2ppadFPfvIT1dfX69WrV/rqq6+0u7urYrEor9erpqYmjY6O6vDwULOzs65xbcMw1Nraqp/+9Kf61a9+pWAwqM8++0y//e1vtbGxoaqqKg0NDenjjz+W3+/XP/zDP5z7jL+r854Pr9ernp4effjhhxoZGVFdXZ22trbk8/lkGIYikYjGx8f1V3/1V+ro6NA//uM/6re//a1SqZQ1pmEYqq2t1QcffKBf//rXyufz+ud//mf5/X798pe/1OzsrPb393V6emo9Q1VVVero6ND169d18+ZNNTc3a2dnR//0T/+kFy9eWLHlYDCoiYkJ/c3f/I0mJycVi8X093//91paWlI+n7ees4mJCf385z9Xd3e3Hj9+rN/97nfa3t5+69lyrkOlz9F5+5nPa3d3tz766CO1t7draWlJkUhE6+vrevr0qXp6enTjxg21trYqlUrpxYsXmp2dVUNDgyYnJ1VfX6/Hjx9raWlJgUBA7e3tWllZ0dbWlm7cuKH29nYdHh5qdXVVw8PDun37tlZXV/Xpp59qa2tL+XxeXq9XNTU16ujo0MTEhIaGhuT3+7W2tqbHjx/r9evXVuQ6GAyqt7dXd+7c0crKih48eGCtVSQS0aVLlzQ0NKRSqaRIJKKenh4VCgXl83kdHBxoc3NTmUzGun7zj9frVW1tra5evap/9+/+nXp7e/X555/rH/7hH87Eq+3vl0rvAQAAAAAAAAAAAAAAAAAAAAAAAAAAwF8SAtYAAAAAAAAAAAAAAAAAAAAAAAAAAACQ9G9x0Eoin27HhkIh9fX16dKlS6qurtby8rK2t7fV3t6u1tZWHR8fq7OzU62trTo9PdW//uu/yufz6Sc/+YlSqZRaWloUDAa1vb2tbDareDxuRVClP4Zo29vbNTw8rPb2doVCIXm9Xr18+VKrq6sqlUoyDMOKpo6NjelnP/uZuru79ejRIx0cHJwJV9tDpebY/f398vl8mp2dtcYsd732MKozMm3/+6LQdXV1tS5fvqy/+qu/UiaT0dOnT5XNZt86PhQKqaOjQ5OTkxoeHlZtba22trb09ddfa3Z2Vtls9sx8zXk5xzEMQ3V1dRoYGFBXV5eCwaD29/c1Pz+v3d1d5fP5d7r3Jr/fr8bGRg0NDWl8fFydnZ2Kx+O6f/++FhYW3iuyfdGzaBiGmpqadPnyZQ0MDCgej2t7e1uXLl3S2NiYDg4O9H//7//V4uKidV1m9Nrn86m5uVlTU1O6c+eO2tvblUwmtbu7q0wmY0VyzVB0ubmbz86NGzd0/fp1FQoF/eY3v1E8Hld7e7tu376tqakpNTU1KZVKWc/h4eGhNjc3VV9fr2vXrqm2tlZra2v69NNPtbq6qlQqJY/Ho3A4rJGREf30pz9VLpfTb3/7WxmG8VbA2oy7f/zxx7p9+7YODw91//59PX36VEdHR2pvb9etW7d06dIlbWxs6F/+5V+0ubn5zt/3Su6X81n3+/3q7OzU1NSUMpmMXr16pfb2dkWjUcXjcTU0NOjKlSv68MMPFQqF9Lvf/U4PHjzQycmJFSH2+/1qb2/XBx98oOvXr2t/f18vX75UJBLR2NiY1tfX9ebNGyWTSUl/DGY3NDRofHxct2/f1uDgoKqqqqxrf/HihU5PT+X1elVfX6/bt2/r5z//uTo6OrS1taV//ud/1vT0tJLJpDwej5qbm3Xz5k199NFHikQievLkif7whz9oY2NDuVzOuh/296j5vqnkuXdbO/s2r9erSCSiyclJ3bp1S7lcTs+fP1d9fb1isZh2dnZ09epVdXd3W8/Xzs6O1tfX1dHRob6+PhUKBU1PT2t3d1ctLS1qaWlRMplUKpXSxMSE6uvrtbKyonQ6rXv37qm5uVnPnj3To0ePFIvFVCwWVVNTo87OTvX29qqurk75fF7z8/NqbGxUJBJRZ2en1tbWlMvl1NDQoEuXLunWrVsqFAp68OCBdW/Md1BDQ4NmZ2cVDAYVCoVUX1+ve/fuKZFI6PHjx2feYR6PRz6fT9XV1err69P169fV19en6upqzc/P65//+Z+1v79/5rsu6a24+HnrX+5+AQAAAAAAAAAAAAAAAAAAAAAAAAAA/FARsAYAAAAAAAAAAAAAAAAAAAAAAAAAAIAk98Cyc7tbvNYMwI6OjmpgYECZTEYvXrzQ3t6eWlpa1NfXp3A4rFgsJq/Xq1evXml9fV3BYFAffvihGhoadHBwoEQiocXFRbW2turk5ESpVMqKMJvR5b6+Pg0NDamhoUFHR0eamZnRzMyMMpmMFbltaWnR1NSURkZGVFtbq1gsppWVFWUymTPXYf4xDEPhcFjd3d2qr69XNBrVq1evlEgkzlyr89rN353Barc1cltb85quXr2qDz/8UPF4XL///e/fCmd7vV61tLTo0qVLGh0dValU0sbGhqqrq1VTU6OWlhYtLy9b0ety8VXDMKzI8eTkpMLhsOLxuIrFooLBoKqrq+X3+1UoFMoGd92u2+fzWfMbHx+X3+/X6empFTUPBoPy+XznBmPfh9frVXt7u65du6aOjg4dHx8rl8vp8uXLCgaDevHihZ49e6adnR3lcjlr7ua6T0xM6N69exoaGtLx8bEePHigg4MDNTY2KhgMKhKJKB6P6/T09K11MEO6Znj5zp076ujokM/n07Nnz+Tz+fSrX/1Kw8PDikQi8vv9ymQyMgxDbW1tymazCofD6unpUaFQUDQa1RdffKHl5WUlEgnlcjn5/X51dXXp7t27unz5sjY2NvT73/9e6+vrZ8Lu5jqPjIzo448/1tDQkFZXV/X5559rbm5OhUJBfX19+vDDD9Xd3a3p6Wl9+eWXisVikqRIJKJgMKhkMqmTk5ML172S+2aPp9fW1mpkZERdXV3a2dlRIpFQf3+/Dg4OFI1GFQ6Hdfv2bV29elXFYlH379/XV199pXg8bkXpg8Ggenp6dPXqVQ0MDGhtbU2bm5vq6OjQyMiIFXKPRqPK5/MKhULq7OzU9evXNTIyourqaiUSCZ2cnOjLL7/UzMyM0um0qqqq1N3drbt372pqako1NTXa3t7Wp59+qunpaWUyGdXW1qqnp0dTU1MaHx+3nq2HDx9qa2vrTCzZHkq2B+7fdx3NNTQj6VevXlVPT482Nze1u7ur1tZW+Xw+pdNpjY2NqVQqaXl5WQ0NDSqVSjo5OVFPT49aWloUi8U0Pz+vdDqtkZER1dfXa2dnR8lkUv39/WpqatL6+rrq6+vV39+vdDqtzz77TAsLCzo6OpIkNTc3a2hoSI2NjTo+Prbeve3t7aqtrdXOzo7W1tYUCoU0Ojqq27dva2RkRHt7e/r000+1vb2tQCCg/v5+jYyMKJlMam5uTplMRlNTU2pra1MoFNL29rZev36tjY0N5fN5GYZhPQdtbW26fPmyhoeHlclktLGxoZOTEy0sLGh7e1u5XE6lUunMO8owjLIRa/vzetE9AwAAAAAAAAAAAAAAAAAAAAAAAAAA+CEiYA0AAAAAAAAAAAAAAAAAAAAAAAAAAIALlQt6+v1+dXR06OrVq2ppabHCo7FYTHV1dRoYGFBvb69yuZwODg70+vVr7ezsyO/36/r16xoeHlYymdTS0pIWFhbU0NCgYrGonZ0dKzhtGIaqq6vV2dmpoaEhtbe3Kx6P69WrV5qdnVUymZTH47Eit7du3VJ9fb329vYUDAZVKBSUy+VUVVV1Jm5qCofDmpyc1MTEhPL5vF6+fKmtrS0Vi0XXELU9jFoJt339fr9aW1t1584dXbp0Sevr6/rss8+0sbFhzVGSqqqqNDg4qBs3bqi+vl6rq6taXFxUOp3W+Pi4qqqqrMivfW7OeZvR5oGBAbW2turo6Eizs7M6PT1Vb2+v6urq1NzcrGKxqP39fSWTyTPXbw9++3w+1dfXq6GhQYZhqKOjQxMTE/L5fFpeXtbq6qoVA9/a2rLuZaVR2IuC6eY8WlpadO3aNfX09KhUKqm5uVmhUEgHBwd6+PChVldXlUwmVSgUZBiGJCkYDGpgYED37t3T1NSUgsGgZmZm9NVXXymRSGhgYEBtbW3a3d2VYRhvXb8k6/pHRkY0OTmpmpoaJZNJZbNZZbNZRSIR/fKXv9TJyYm2trbk9XrV1tam2tpaGYahZDKpw8NDra2tKRqNamtrS9vb2zo6OrIi5A0NDZqcnNRPfvITNTc36/nz57p//742NjaUzWatOZnx+Js3b+qDDz5QKBTS119/rSdPnigajcrn81kh4erqan322Wd6/vy5EomEIpGIRkdHNTU1pVwup08//VRLS0tW6Nfr9aqqqkpVVVXK5/NKp9MqFAoV3UNzfh0dHbpx44aqq6s1Pz+vra0tDQwMqKmpScfHx2poaNDNmzc1MDCgo6Mjff3115qentbh4aG19ub3+tKlS+ru7tbR0ZGWl5fV3t6ukZERxWIxffnll1pZWVEul1NDQ4NGRkY0Njam6upq7e3tqaamRl6vV69evdKrV6+UzWbV1NSkiYkJXb16VcFgUPF4XNlsVi9evNDz58+Vy+XU2dmpqakpdXd3KxwOy+PxaHl5WdPT01pfX1c6nba+J873ivP3d2F+j/1+v2pra9Xd3a2RkRH5/X49e/ZMuVxOfX19ikQiMgxDNTU12tzc1M7Ojrq7u1UqlZTP59Xd3S3DMLS8vKy1tTX5/X6Nj4+rurpaq6ur2t7e1sDAgPr7+5XNZjU8PKxQKKTl5WU9f/5c0WhU6XRaHo9H7e3tun79usLhsFZXV7W6uqpMJqOWlhZVV1drZ2dH+/v7CofDunLlii5fvqy2tjatrKzo008/1eLionX+S5cuaXd3VwsLC0okEurt7VVvb6/C4bC2trb05MkTvX79WsfHx5KkUCik9vZ2TUxMaGhoSH6/X8vLy1pZWVFHR4dKpZLW1taUTqdd19z+PS73mfn5n3LfAAAAAAAAAAAAAAAAAAAAAAAAAAAAvo8IWAMAAAAAAAAAAAAAAAAAAAAAAAAAAMAK9F4U7rSHQKuqqtTf369r164pFAppaWlJS0tLOjw8lGEYamlp0eDgoMLhsBYWFvTmzRtFo1Hl83n19PTo8uXLKpVKevbsmWZmZpRMJtXS0qJ4PK7t7W0r5uv3+9XT06Nr166pt7dXBwcHmp6e1sLCgo6Pj1UqlRQKhTQ4OKjbt2/L6/Xq2bNn8vv9GhwcVG1trcbHx3VwcGBFhs2QaTgc1tTUlO7cuaNisahHjx5peXlZp6enb8Vo7WtlbjtvvdyiqR6PR6FQSH19fbp7964GBwf15s0bff7559rc3DwTCA6FQhofH9fVq1eVyWT05ZdfamNjwwr/hkIhlUolJRIJ5XK5M/fPHpz2eDxqa2vT1NSUSqWSFhcXtbu7q3Q6rZqaGoVCIXV2dqqrq0t+v18nJydKpVJn5m7eh7q6Oo2OjurWrVtqaWlRNptVKpXS8vKy5ubmtLu7q1AopFu3bimRSGhhYUHxePydwsdugXD7PAzDUG1tra5cuaLR0VHV1dXJ4/Ho4OBAr1690sLCgvb29nR6emodbxiGGhsbde3aNd2+fVvd3d2Kx+P67LPP9OLFC+XzeV2/fl1jY2NWaH17e9taV+mP4eq6ujoNDg5qcnJSdXV12tnZ0d7enhUFzufz8vv9mp+fVzwe1+XLlzUyMqLGxkbt7u5qZmZGc3Nz2tzc1OHhoU5PT5XJZJTL5ST9Mdbc1dWl27dv6/Lly6qpqdHz58/14MEDRaNR69n1eDwKBALq7u7Whx9+qCtXruj4+Fj379/XixcvdHR0pIaGBl26dEmTk5NKp9N68OCBFhYWlMvlNDo6agXk6+rq9Omnn+ro6Mhaq0gkoq6uLgWDQcViMe3v77/Tu8EMHn/44YcKBAKanp7W9va2+vr6dPXqVetam5ubrSD9kydP9Pz5cx0cHKhYLCoUCqmpqUmNjY3q6OhQe3u7fD6fDg4O1NjYqEgkotPTU83Ozmp5eVmZTEatra26evWqNebGxoba2tpUU1OjpaUlzc3NKZvNqq+vTzdu3FBPT4/29/d1fHys9vZ2zczM6OnTp5KkGzduaHBwUMViUfF4XMFgUDs7O3r+/LmWlpaUTCaVz+fPROPLvTPehXlcOBxWX1+fent7FQgEdHBwoIODA9XX16u/v1+BQEA+n0/Hx8daWlpSNBpVW1ubGhsb5ff71dTUpFQqpTdv3mhzc1M+n0+NjY1KJpPW/pFIRAMDA+rp6VEqldLq6qqmp6e1uLhovS/N98fNmzdVXV2tN2/eaGVlxXoPeb1exWIxGYah3t5eDQ0Nqbm5WX6/X69fv9aXX36pN2/eyOPx6PLly7p586a2t7c1Pz+vfD6v8fFxTU1Nqb29XcvLy3r27JmWlpZ0fHxszXlsbEzDw8Py+/3a2NjQ2tqatre3VSwW1dPTo93dXcViMSu+bn9HX+Rd9gUAAAAAAAAAAAAAAAAAAAAAAAAAAPghImANAAAAAAAAAAAAAAAAAAAAAAAAAACAc9nDtObPwWBQo6Ojunr1qtLptJ49e6ZoNKqTkxMVCgU1NTWpr69PLS0tOjg40MzMjDY3N5VOpxUOhzU+Pq62tja9evVKc3Nz2t/fVyQSUWNjo6LRqBKJhIrFojwej+rr6zU1NaXh4WHt7Ozo0aNHWlxc1PHxsTwejxoaGjQ2NqYrV64omUzq6dOn2tvb061bt1RbWyuv16u+vj4rTGuqqqrS4OCgbt26pZqaGj1+/NiKYheLRStI6wybVhrytf/u8Xjk9XpVV1enyclJ3blzR+FwWE+fPtWTJ0+0s7NjRYzNgPD4+Lj6+/u1ubl5Jjot/TFuGwqFrNh3JpNxnZdhGOro6NDdu3dVKpU0PT2tra0tZTIZKwTd3d2tSCSiaDSqvb09pVKpt4Ld1dXV6u3t1ZUrV6yYbD6f15MnT/T1119rbW3NumcjIyOqq6vT8+fPtb6+rmQyaYVlK+UWDDcMwwo3T05O6t69e+ro6FAikdDc3Jxevnyp9fV1JRIJZbNZlUolGYYhwzDU3t6un//857p9+7ZCoZCePXumJ0+eaHV1VYZh6Kc//amuXr2qpaUlPXr0SEtLSzo5ObHuXU1NjQYGBjQ1NaW2tjbF43E9f/5cgUBAV65c0fDwsLLZrB4/fqxXr14plUrpgw8+0MDAgLxer5aXl6249P7+vtLptAqFgnWdVVVVam5u1sTEhMbGxtTd3S2fz6fDw0N5PB6lUinl83kZhqFgMKiWlhZNTEzo+vXr6uzs1OLior788kstLi4qlUpZweHh4WFFo1E9evRIOzs7CofDGhkZ0cjIiLLZrILBoHZ3d/XixQudnJyotrZWPT096u3tVTab1fr6ug4PD5VOp9/pHnZ1dennP/+5PB6Pnj59qvX1dWv9qqqqJMmKg5vh8RcvXigWi0mSmpqaNDw8rObmZiWTSUUiETU0NCgajUqSTk9Ptb+/L0laW1uTJI2NjWloaEhVVVVaXFzUzs6OOjs7VVdXZ8XDT09PNTY2plu3bikUCmlubk6pVErXrl3T/v6+FhcX1draqpGREVVXV2tzc1MnJycaHR1VOp3Wy5cvNTc3p3g8bsWrLwrZvy9zzEKhYEW2e3p6NDIyIr/fr4ODA62srGhpaUmxWEyRSESTk5NqampSJBJRIpHQ9va20um0GhsbVSqVFIvFFIvFdHR0JI/Ho0gkoo6ODjU0NGh3d1ezs7NaWlqyYuZVVVWKRCK6ffu26urqNDMzo6WlJSUSCRUKBSvA3tPTo/7+ftXV1alQKOj4+FipVEpff/213rx5o0KhoPHxcd25c8d63gqFgq5evarh4WHrvf/06VOtra0plUopEomop6dHAwMDqq+v18HBgVZXV7Wzs6Pj42Nls1mFQiHl83nt7e0pmUxaa1YqlVQoFKyYunNNnez72P87BwAAAAAAAAAAAAAAAAAAAAAAAAAA8JeAgDUAAAAAAAAAAAAAAAAAAAAAAAAAAAAqZsaMx8fHde3aNcXjcc3MzGhra0vpdFqlUkk+n0/t7e0aHByUx+PR3NyclpeXlUql5PP51NnZqampKaVSKT169Ei7u7vK5/Nqb29XS0uLZmZmlMlkJEm1tbW6evWqJiYmdHh4qKdPn2pxcVEnJydWvHpqakqjo6Pa29vT06dPtbu7q56eHo2NjWlra0vFYlGdnZ3K5XJWkLiqqkrDw8P66KOP1N3drefPn+vVq1c6PDxUoVCwrve8kGklkVMzjFpVVaW2tjZdvXpVN27cUDAY1IMHD/T48WMdHBxYsVWv16u2tjZdunRJdXV1Wl1d1dLSkg4PD63519TUqK+vT1VVVXrz5o11vH0+hmHI6/WqtbVVP/3pT1UqlfTo0SMrXm3OaWRkRF1dXUokElpbW9Pu7q71uRl/jkQiGhgY0NjYmJqbm9XZ2Sm/368//OEP+uyzz7SxsWEFtJubmzU5OamdnR0tLCzo4OBA+Xz+3PU5bx0Nw7D283q9Vjj917/+tXp6erS2tqYnT55ofn5eu7u7Oj09te6fGXseGBjQL3/5S01OTurg4EBffPGFnjx5or29Pfl8Pv385z/XjRs3tLi4qAcPHlgB3VKppGAwqI6ODl2+fFkDAwNKp9N6/vy59vb2rGezvb1dm5ubevTokWZnZ1VdXa2bN29qYmJCe3t7MgxDX375pZ48eaLd3V3lcjkrBm1GxAcHB3Xp0iW1traqUCgolUrp5OTEeh7C4bCkP4adR0dH1dXVpdbWVnV1denFixf69NNPtbi4aH2Prl+/rrGxMe3u7urRo0eKx+Pq6urSwMCAJGlmZkY+n0/j4+Oanp7WwcGBent7NTo6qmAwqM3NTW1ubioWi51Z04uedY/Ho+bmZv3sZz9TbW2t/vCHP2hjY0Pd3d26du2a8vm8EomEjo6OFIvFdOXKFRmGoZWVFR0eHqq6ulotLS3q6elRfX29dnd3JUlDQ0PW+PF4XEtLS+rq6lJvb6/6+vo0MTGhzs5ORaNRzc7Oant7W+3t7RoaGlI2m9Xc3JySyaQGBgZ07do1ZTIZPXv2TKenp7p7966CwaDS6bSmpqbU0NCgeDyuly9fKhaL6fr166qvr9ezZ880Pz9/5rtY7hn+JgLI6XRaGxsbOj4+Vn19vUZHRzU+Pq5CoaDl5WUtLi5qc3NTiURCXq9XU1NTVtx6f39f0WhUqVRKhmHo5OREsVhMiURCmUxGoVBI3d3dGhgY0NHRkXZ3d9XU1KSrV6+qqalJ8XhchUJBxWJRHR0damtr09OnT7WysqLj42MVi0WFQiF1dHRoYmJCXV1dyuVyWl9fV1VVlerq6jQ3N6eVlRUVCgUNDQ3pgw8+UCKR0KtXr+TxeDQ4OKjOzk41Nzfr8PBQL1680NbWlrxer3p7e9Xf36+mpial02nNzc0pGo3q8PBQ2WzWet9ls1nF43EdHR0pnU6XXUu3+2G/f/a/iVcDAAAAAAAAAAAAAAAAAAAAAAAAAIC/NASsAQAAAAAAAAAAAAAAAAAAAAAAAAAAcCEzHhuJRHT16lUNDg4qFovpxYsX2tnZUTablSR5vV6Fw2H19/errq5OKysrevXqlRKJhCQpHA5rbGxMdXV1evjwoZaXl5XL5eT3+9Xa2qpisahEIqFSqaSmpiZdv35dt2/f1unpqZ49e6Y3b94olUrJ7/ertrZWfX19am9v19raml6+fKnd3V0rLBwKhfTFF1+osbFRnZ2dVgQ5HA5rdHRU165dU19fn3K5nLa2tqwQtOl949X2IKphGKqpqVF/f79u3LihiYkJeTwePX78WI8fP1YsFlOxWJRhGKqurtbQ0JDGxsZULBb1+vVrra6uKpFIWPPy+XxqbW21oq9mPNoeXzWvs6WlRTdv3lQwGNTDhw+1sbGhXC5n3afu7m5dvnxZHo9HKysrWl9fVzKZVKlUktfrVU1Njdra2qyYsBknLxQK+pd/+Rf97ne/0/b2tjVmMBjU4OCgJOnFixfa29uznotya1ZuHc21C4fDCgQCqqqqsoLE165dU2Njo6anp/X48WMtLy8rkUicCZQHAgG1tLToypUrVoB4enpa09PTWl9f19HRkerq6nT37l3dvHlTb9680WeffabV1VVlMhl5vV41NTVpZGREIyMjqq6u1s7OjlZWVpRKpdTZ2alLly4pFApZAe2NjQ0Fg0F9+OGHGhwc1Js3bxQMBrW6umpFr+3x6kAgoLq6OnV3d2t4eFjBYFDb29uqra21nsmamhrduXNHf/M3f2PFyyXp5OREfr9f0WhUX3zxhVZWVqw4/OTkpBU6jkajCofDamlpUTAY1O7urnZ2dpTL5fThhx/q+PhY8Xhct2/fVmNjo+LxuF6/fq319XUdHx+fCTVfxDAMNTU16ac//anq6+v16NEjRaNR9fT06KOPPpLP59Pu7q52d3e1vr6ufD6voaEh1dfXq66uTmNjY+rq6lJNTY2Ojo60srKio6Mj3b59W11dXdrY2ND29rbm5+cVi8Xk8/lUKpV0+fJl5fN5ra6u6uXLl4pGo4pEIhobG5PP57PC3kNDQ2ptbdXu7q51H2/duqWJiQml02l1d3crkUjozZs3Wl5e1v7+voaHhzU8PKylpSXNz8/r4OCg7Jp80+HjQqGgbDarUCikqakp9ff3Kx6Pa2FhQYuLi9rf39fp6al8Pp9GR0d18+ZNNTQ0aHFxUc+ePdPx8bHS6bTS6bSOj4+Vz+cVCoWs90dNTY329/e1vr6u2tpa9ff3q6amRi0tLaqqqtLR0ZG8Xq8GBwe1srKixcVFnZycyOfzqampSd3d3err61NNTY02NjZ0cHCgYDConp4exeNxbW1tqVQqqaurS3fv3rXeaU1NTfL5fMrlcjo9PVWxWNTa2ppyuZxGR0fV2toqn8+nbDaraDR6JqSez+dVKpWstc7lclpdXVU6nX4rsu71es/sK7nHxp33joA1AAAAAAAAAAAAAAAAAAAAAAAAAAD4S0PAGgAAAAAAAAAAAAAAAAAAAAAAAAAAABYzAGxGPM1wtc/nU21trcbHxzU+Pq7t7W09f/78TMDY3K+1tVVNTU3a39/X9PS0dnZ2VCgU5Pf7VV9fr87OTh0cHOjFixdKJpMqFouqrq5WXV2dEomEDMPQwMCAJicnde3aNYVCIStenclkFA6H1dbWpra2Nvn9fq2urmpxcVGxWEyBQEBDQ0NWdHV1dVXBYFAej0fd3d3yeDwaGhpSf3+/vF6vjo+PJf0xvhsMBlUoFKzAcKFQUD6ft6Kp5zED0iav16tAIKCGhgYNDQ1pYmJC/f398vl8mp2d1aNHjxSPxyVJVVVVampq0tjYmMbGxpTJZPT06VMtLS0pmUxaYVav16u6ujp1dHTo9PRUy8vL1hj283u9XtXX12tyclKtra168eKFVlZWlM/n5fF4VFVVpe7ubn300UcKh8N68eKFZmZmdHh4qFKppFAopKamJvX19am1tVWlUkmnp6cKBoMKBAJ68uSJPvnkE0WjURWLRWvMvr4+9fX16c2bN1pbW1Mmk3nn588e/w4EAhoYGNDg4KDq6+vV0tKi7u5uVVdX6/Hjx3rw4IHW19d1enqqUqkkwzCsYHhfX5+uX7+ukZERnZ6e6rPPPtOLFy+0v7+vUqmkjo4O3bx5U5OTk1pfX7fi1blcTqFQSJ2dnRobG1NbW5vS6bQWFhaUSCRUU1NjrWsul9Pjx481OzurWCymcDismzdvqr+/X7Ozs1peXtbt27e1vb2tw8ND5fN5eb1eVVdXq7a2Vs3NzYpEIvL5fIrFYorFYlbMeXt7W69fv5bP51MoFFJtba0KhYK2tra0u7srn8+n5uZmzc7OanNzU3V1dWpra1NLS4va29tVU1OjTCaj9vZ2hcNh7e3taX19XVtbW8rn8xobG9OlS5eUz+et2PX6+rpev36t3d1dpdPpt+K/5zEMQw0NDbp69ao6Ozv17Nkzra+va2hoSLdv31Zvb69mZma0urqq9fV1HR4eqrq6WrFYTB0dHbpx44aSyaQymYw2Nzf15s0bJRIJdXR0aHR0VOl0WvPz85qZmdHu7q4KhYL29vb08OFDNTQ0KJFIaHl5WYeHhwqHwxofH1ddXZ11v/v6+uT3+7W7u6utrS0VCgVNTU3p5s2b8ng8Wl9f18bGhjY2NrS5ualUKqXm5maNj4/r9PRUr169soLsxWLReke8yxq9C8MwVFtbq4GBAd24cUM9PT3a29vT48ePtbKyYsXFvV6v2tradPv2bTU1NWltbU1ff/21FhcXVSgUlMvlrD+BQEChUEiSlEgktLu7q4ODA6VSKVVVVWltbU3hcFilUkmZTEaZTEYtLS1WCDoSiaiurk719fVqbGxUIBDQycmJVldXdXx8rLq6OvX19SkUClmBcvOZ6O7u1urqqpqbmxUKhbSysqLDw0MrrG6+z30+n1KplDY3NxWNRrW/v69kMqlcLme9B+1rXigUFIvF3roH5nvE/t+zcvvYfVv3EwAAAAAAAAAAAAAAAAAAAAAAAAAA4LtEwBoAAAAAAAAAAAAAAAAAAAAAAAAAAABnYp7OgGcoFFJHR4f6+vrU3t6u3d1dTU9Pa3t7W/l83trPjAd3dnbKMAy9fv1aS0tLymQy1piGYSgejysajWpjY0OFQkEej0d1dXWqq6tTJpPR1NSUFU8OhUKKxWLa29tTqVRSW1ub2tvb1dTUpHw+bwVnj46O5PF4VF9fr6GhIRUKBb169UrxeFyJREKpVEq3b9/W+Pi4QqGQdnZ2tLGxoe7ubg0ODmp0dNQKsuZyOaXTaZ2cnGh/f1+xWEzZbPat9bKvkxlKNT+rrq5Wb2+vRkZG1NnZqbq6Op2enmp9fV3Pnj3T3t6ePB6PwuGwOjo6NDIyovb2dhUKBW1vb2tjY0OpVMoK5fp8PtXX16u/v1/19fWKRqOKRqNn5uXxeGQYhnXu/v5+bWxsaGFhQZlMxop09/X16ebNm2pvb9fs7Kymp6e1t7cnSWpoaFBPT4/6+vpUW1urk5MTxeNx1dXVqbGxUevr63r48KE2NzetazYMQ62trRobG1M+n9fi4qJOTk6sub8L57NnRp+9Xq8VFJ+ZmdGXX35pRbINw1AgEFA4HLbmb8and3Z29PjxYy0sLCiVSikQCKitrU03b97U8PCwNjY29MUXX2hjY0Mej0dNTU3q7OzUwMCAqqurtbm5qe3tbfl8PvX396uzs1M+n0/RaFQLCwtaWlrSycmJgsGgRkdHNTExoeXlZT148EC1tbXy+XwKBoNqbm5WbW2tNcdwOCxJisfj2traUrFYVG9vr7q6upROp7W2tqbNzU0VCgUlEgnV1dUpn88rHo+rUCjo+vXrymQyisfj6uvrU319vSTp9PRUsVhMkUhEHo9HmUxG0WhUKysrVsy5t7dXd+7cUXNzs1ZWVpRKpfTmzRsriG4G6SsN+Xo8HoVCIStgvrS0pKWlJbW1tenKlSsKhUKanZ3Vy5cvtbKyopOTE+t7//r1axmGoUgkouPjYyskHY/HFQgE5Pf7FYvFtLCwoCdPnmh7e9sKGR8fH2t6elpVVVXKZDLKZrOqra3VyMiIBgYGVCqV5Pf7rQi5+a7w+XyamJjQzZs3JUmPHz/Ws2fPtLW1ZcWSze9QS0uLFhYWFI1GlclkrHi1uTb2NXK+E96Xx+NRJBLR5OSk7ty5o7a2NitM/fr1a6VSKSvY3tzcrNu3b2t0dFTRaFRffPGF5ubmrO+ffa6SdHR0pGQyqWKxqGw2q3w+r2KxqNPTUx0fH58JPxuGIUna399XV1eXampqrO+h+dxGo1Elk0k1Nzert7dXzc3N2t7eVjQaVTqdVltbm3p6ehQKhRQOh5VKpbS+vq7V1VUVi0WlUiklk0lFIhGlUilFo1Gtrq5qe3tbx8fH1vzKrXmpVLL+G2TGpz0ez5l3sfMYN84xAQAAAAAAAAAAAAAAAAAAAAAAAAAA/pIQsAYAAAAAAAAAAAAAAAAAAAAAAAAAAPiRM4OfbrFPe4y5sbFRW1tbWlpa0s7OjhW6tQuFQjIMQ1tbW1pcXFQikbBCxoVCQYeHh3r8+LFOTk6sz7xer3w+n3w+n9ra2tTa2qpsNqvV1VUdHx/L7/ero6NDdXV1CofD8vl8Ojg40PLysqLRqBV0DQaDamtrU319vVZWVrS2tqZ0Oq3NzU3Nzc1pZGREwWBQi4uLmpmZUTwe1+npqcLhsFpbWxUOh3VycqKjoyMdHByoWCzK5/OdiXtXup5+v1/19fWKRCIqFAo6OjpSsVjUysqKotGogsGg6urq1NbWps7OToVCIa2urlqR5UgkYkVofT6fmpqaNDw8rJaWFsViMUWjUR0fH1vRVvO8VVVVamtr08DAgNLptObn55VMJuX1elVXV6eBgQHdunVLTU1NmpmZ0aNHjxSLxeTz+dTQ0KD+/n51d3fL6/Vqd3dXR0dHamxsVHt7uw4ODvT1119rfX3dChB7PB7V1tZqcHBQVVVVmpub0/7+vhUZNr1rFLZUKimbzWp9fd0KRI+MjMjj8WhlZUWJREJVVVUKh8Oqra1VY2Ojmpub1dTUpI6ODtXW1mplZUUPHz7U2tqaFdlua2vT8PCwRkdHtb29rYcPH2pra0u1tbVqbm5WW1ubwuGw0um0lpaWtLm5Ka/Xq8HBQQWDQe3v72t9fV1LS0va399XLpeTx+NRTU2N2tvbtb+/r4cPH2pnZ0cej0fxeFzt7e368MMPraByLpdTLBbT+vq6FQBua2tTW1ub/H6/Xr9+rbW1NSWTSRUKBSWTSSsmXCwW1dDQoOrqalVVVWl4eFj5fF6Hh4d68+aN9vf3VVdXp8PDQ+Xzea2vr2tnZ0enp6fW9+ju3btWaPrJkyd6/fq1dnd3lc1m3ys6bgaou7q6lM/ntba2pra2Nk1NTcnr9erRo0daXV21zmE+C5lMRqurq9rf35ff71cmk1EqlVIul7NCxNvb27p//75isZhisZgVKzafkVQqpdPTU+s90t7eromJCXV2dlrrt7W1peXlZW1vb8vv92tkZETXr19XIBDQ9PS0vvzyS21vb5+ZWzgcVm9vr05PT7W8vGzF5J3Psf3d8E2Fj30+n1pbWzU6OqqmpiatrKzo0aNHWlhY0OnpqXWe2tpaXblyRdeuXdPJyYm++uorzc7OWu9V891g7p/NZq3n1Yxtm5+Vu+/7+/t68eKFRkZGVF1drXQ6re3tba2srGhnZ0fJZFLBYFC1tbWqrq7W4eGhXr9+ra2tLeVyOdXW1mpzc1PHx8fa3d3V0tKSNjY2lEql5PV6rSC3JB0cHGhnZ0cnJyfWvbBHq93W1+1+OP87RpAaAAAAAAAAAAAAAAAAAAAAAAAAAAD82BGwBgAAAAAAAAAAAAAAAAAAAAAAAAAAgMUt9pnP57W/v6/d3V1Fo1GdnJy8FSg2j02lUlpZWVE2m9XBwcGZyHWhUNDBwYEODw9VKBRULBat4Gg8Htfq6qqKxaKOj4/1+vVrHR4eanx8XGNjYxoZGVE2m9XR0ZFWVlb0+vVr7e3tKZPJWPHacDis9vZ2JZNJK+RaKBS0v7+vR48eaX19XalUStvb21ZQulgsKp1Oq6OjQ36/X8lkUvF43PqTSCSUzWYvXCOndDpthVpbW1utKHSpVFJvb6/q6+vV2Ngov9+vo6MjvXnzRpubm4pEIpqYmNDw8LAk6fj4WHV1dRocHFRTU5P29/e1urqqg4MD5fN5K/QryYpQj4yMqKamRgsLCzo4OFAgEFB9fb36+vp048YNDQ4OamZmRi9evFA8HlcoFFJra6t6enrU2NioZDKp9fV1pdNp9fb2qqenR4lEQs+ePdPGxoYVETbXobGx0QqDLy8vK5PJlA3OVsowDOt5SqfTqqqqUkdHhySpublZU1NTkqRAIKBAIGCFxkOhkDwej7a2tvTs2TOtra2pqqpK7e3t6unpsWLlHo9He3t7MgxDQ0NDampqUiQSUS6X0/b2ttbX1xWLxZTL5RQMBrW+vq69vT0rcJ5Op888v/l8XhsbG5qdndXKyooVqX758qUmJydVW1trPf9ra2taW1tTLBZTJpOR3++Xx+NRIpFQLBbTzMyMDg4OVCqVrGfUMAzrXNlsVslkUplMRoFAQDs7O5qZmdH6+roymYxisZjW1taUz+eVzWbl8XgUiUTU19ena9euaWhoSGtra7p//76Wl5d1enpqfR+d8Xp7HL3c/TQMQ6FQSE1NTfL7/RoYGFBjY6N8Pp9mZmY0MzOj4+Nj16h5Op1WJpM5s82Uy+W0u7ur/f39MzFm85m3R5jNbbW1taqpqVGpVNLJyYlWV1etsHcgENDw8LCuXbumcDis58+f6+uvv7Ziy6VSSYVCwQpy19TUaHV1VdFo1HrPVLIefyrDMFQsFrW/v69YLKbXr19rY2PDild7PB4Fg0GNjY3p9u3bKpVKevjwoV6+fKmjoyMrLm+fX7mfz9smSYlEQq9evdLW1paCwaBSqZSOj4+VSqWUz+dVLBbl8/kUj8e1uLioZDKpjY0NHR8fS5K2t7f1xRdfyDCMt47L5XJaW1vT1taWpD9GtPP5vAqFwlvzOW+tze+h9G9BcTPIXek9skevCV4DAAAAAAAAAAAAAAAAAAAAAAAAAIC/NASsAQAAAAAAAAAAAAAAAAAAAAAAAAAAUFapVNLx8bHm5+etwKsZBzUM48y+xWJRBwcHOjo6cg2B2qOi9vBysVhULBbTw4cP9fTpU6XTaaXTaXk8Hnm9XitMe3h4qJWVlTMRbXMswzDU0NCgSCSi5eVlraysKJPJWMHfjY0NRaNRFYvFM4HUWCymeDyuubk5SX+MdZuBVfs1mHN144ynSlImk9HW1pYODw/l9/vV39+vhoYGhcNhGYYhwzAUj8f15s0bLS4u6vDwUNlsVvl8XolEQqOjo6qtrVUymVRTU5Oqqqq0sbGh+fl57e3tWVFt+7kDgYC6u7vV29ur9fV1RaNRhcNhdXV1qampSbW1tfL7/To5OdHKyopOT0/V1NSknp4edXZ2qlQqaWNjQ6urq0omk+rt7VV7e7tSqZRevHih1dXVt2Le5potLCxod3dXyWTSNW7+ruzPR6lUUj6f197enhKJhLq6ujQ4OKhCoaBEIqGtrS0tLy/r6OhInZ2dqq6u1snJifL5vDo7O9XS0qKmpiYVCgWtr68rl8spFAqpq6tL9fX18ng8SqfTikajWl5e1u7urtLptPWsJ5NJnZ6engkm26O5pVJJ8Xhcz58/V6FQsJ6vVCqlubk5K/6bzWaVSCSUSqWUy+Ws/Twej3Z3d3V8fKzT01Mlk8m3Arz25zydTuv169dKJBJKJBJWkN28N7lczgo8BwIBtba2amxsTNevX1d3d7dmZmb0ySefaHl52Qo3O5/1dwn/miHqdDpthau3trY0NzdnRePLjef2HTPXxP6+sX9mP9Z+XLFY1OHhoWZnZ5XP57W5uant7W2lUikFAgH19fXp5s2bam1t1atXr/T1118rGo1aIXj72NlsVmtra1pZWdHR0ZH1TnCe2/nzNyGXyykajerw8FD5fF6np6dnYvVer1c9PT368MMPFQ6H9fnnn+vp06eKx+Nn3onfxFyLxaJOTk6seLZbGDqbzSoajWpnZ0eFQsF6tj0ej05OTpRMJl2D2qVSSdls1npe7dslvXXPnXN3C5iX29cwjLLzP+/dDgAAAAAAAAAAAAAAAAAAAAAAAAAA8JeAgDUAAAAAAAAAAAAAAAAAAAAAAAAAAABcI8wmZ8zZ5IwMm387A8bOWLXznMViUdlsVgcHB9Z2Mzi6vLysra0tGYahbDarTCZjRW3dYqzb29uan5/XycnJmfOZ8VK3aykWi8rlctZ+5cLV9utwXp9hGFZA1R7czeVyOj4+1tHRkerq6lRVVaX9/X0tLS1peXlZBwcHyuVy1rxSqZRev36thoYGdXR0qLOzU+l0Wi9fvtSbN2+smK4zAi5Jfr/fimR7PB719/dbgerd3V0tLCzo+PhYt2/fViQS0cTEhNra2tTQ0KDd3V3Nzs5qY2NDyWRSfr9f6XRaq6ur2t7e1sbGhk5PT61r83g81npubm5a4eY/hXNtnc/U2tqaFe8Nh8M6OjpSNBrV3t6eksmkqqqqVFdXJ4/Ho5aWFt24cUNer1eStLy8rLm5OcXjcR0cHCgYDKq9vV1er1dLS0taXFzU3t6e0un0mfW1PzfO+dmfXzPcaz4D5vokk8kzAV/7829eWy6X09HRkRKJhLWtXGDXfFZXVla0vr6uYrH4VlzZPCYcDqu3t1dXrlzR5OSkOjo6tLCwoN///vdaWlqygtfOSLZ5fLlgsFOhUNDBwYGePHmilZUVHR4eKhqNnglxvyvn821+v5z72H8uFApaXV3V1taWtU7FYlF+v19tbW2amppSV1eXlpeX9ejRI21vbyubzb611oVCQZubmzo4OFAymVQ2m3UNin9bisWiUqmUTk9PrXPZ38/19fW6d++eent79eWXX+rrr7+2YtfvMkf799i+zckeErd//839i8WiMpnMW+c0fzaPsR9r/8zt3OVi1G7/DXLbdt41X7Qu3+a9BQAAAAAAAAAAAAAAAAAAAAAAAAAA+C54+AeUAAAAAAAAAAAAAAAAAAAAAAAAAAD8cHk8Hv6hIP5khmFYoV83zoizfbs9YG2Gp50hUjPObH5uGMaZ8Z0hZnMfc7s9FGwPC9vjpYZhKBQKyefzKZVKWdFVZ5zXGTw1z+O8Pmew1rkWzu3mNTnHNgxDgUBAdXV1CoVCyufzOjk50enpqRV8doaDPR6PGhoa1NbWJq/Xq1gsplgsdiZ07RbYrqmp0eXLl/Wzn/1MgUDACsu+evVKz54908HBgdra2vR3f/d3ampqkmEYOjk50dOnT/XixQvrHOa6+3w+Kxxebv3c/q3yn/Lvl+2BWXvI3FxLr9dr/bGHzM19m5ubdf36dU1MTKhQKCgajWphYUGrq6tKJpMqlUoKBAIKhUIKBoNKp9NKJpPK5/NWANh575333Bl7N/e3B3qd3wtnwNr+ufN6zefCPMbt2XIbwzyP1+tVXV2dxsfHdfXqVbW0tMjr9SoQCOj//J//o2fPnun09PTMue2x7vPuS7l7a7/uPzVk7naN9r+d12v/zLnuPp9P7e3tunfvnq5cuaKtrS394Q9/0PLysrLZ7Jl3hKQz96fcs/5d/ft8wzBUXV2tu3fv6m//9m81Pz+vv//7v7e+t87n0S2E7vb9MtfA+d42/zY/K/feca678/Ny35tyz5Pbc+0cy+135/U7xyz33nKe75t8fv8SlUqltyvnAAAAAAAAAAAAAAAAAAAAAAAAAADge42ANQAAAAAAAAAAAAAAAAAAAAAAAAAAP2AErPFNMMPAbrFQt+ionTOKag9Ym/Fde4jUPJc9POwMVTvHts/FLbLrDAfbg8J2bkHichFVt+3nhbzLsa+Hef1u47uFd80YcLFYLBtltYdlfT6fGhsbNT4+rra2Nu3v72tpaUk7OztWpNbn86m/v18TExM6PT3VwsKCtra2lMlkysaL7cz7Zl8D+z10rk0l3KK39uuz/2z+MdfV7ZhAIKBIJKJisahEInEmym2ez34fzGsynyO3uV00f+d3wGRfU7exzXM7vzf2Z9kZWXc7pzl+VVWVmpqaNDU1pWvXrqlQKGhzc1M9PT06PDzU//yf/1MnJyeuoV7nNuf7oNL1+KY43z2S3gp8m3+7PQter1cNDQ26deuWbt26pYODA/3hD3/Q6uqqMpmMCoXCW9dr/l3uOr/Lf5sfCAQ0MjKi//yf/7MKhYL+23/7b9rY2Cj7fnBucwtNmz873yVu717ncW73x+13t4C1/T3tHPe8bfZxyr1DK3mPlTtXubXEvyFgDQAAAAAAAAAAAAAAAAAAAAAAAADAD4/vu54AAAAAAAAAAAAAAAAAAAAAAAAAAAAAvj+cYVy3UK5zf6l8VNQZwXUGQi8KZJcLAF+0n30ezhirYRjWPJwR5nLjnxepLsctvl0oFFzDr85IrDk353XYf3eubaFQ0P7+vr744gsrSJ7P588cn8vl9ObNG62urloBX2cU3C0o7ZyH2/7fRtzX7XmUZIWd3Z6JQqGg09NT1+Psx3u93jPXZo/32s/tHN/82R6qdu7vjAK7HV/uvtq5fffKRYQDgYDa2tp0/fp1DQ0NaX9/X5ubm2ppadHx8bHu37+vZDJ55n7b76Xbd73c9+PPwRm4l3QmMn7e+8Dr9aq6ulrDw8MaHx9XKpXS48ePtb6+rnQ6bT339mOd99/Nd7EOkuTz+dTS0qLr169Lkv7f//t/2tjYUD6fl3RxWNrtWu2fn3fN9nUpF6N2c1702vy5ku+A23zczu92/yqJYLttBwAAAAAAAAAAAAAAAAAAAAAAAAAA+EtCwBoAAAAAAAAAAAAAAAAAAAAAAAAAAACu0eJyKglam/uZwdlywVAzBOwWvXZus4d23c5nn5szumo/vxl9dZv3nzNOWy5YXC7mao9Gu41hv057oNdcX3u0OJPJnDneGaV2G9stRPtNrtdF8WDn+ewxY+ec3EK2zu3OGLLzOSwXZXeGqe3zcsaw3eZ/XpDaed7z5mK/vkAgoIGBAd28eVNNTU168+aNotGo2tvbVVVVpadPn2ptbc11bs4ouvOcbpyffVvfG7fgstv6O/l8PrW3t2t8fFyhUEizs7NaW1tTOp0uG0U/7x3wXUSrTV6vVw0NDbp8+bLa2tr04MEDzc/PK5fLlY3NuykXd3aupTPMbv9e2H82nxv7/ud9Z86bm32/ct8P57ndzvcuYW7neSuZHwAAAAAAAAAAAAAAAAAAAAAAAAAAwA8RAWsAAAAAAAAAAAAAAAAAAAAAAAAAAAC8pdJItfm7W3y4XIha+mOM1C2mWi6k6/Z7uYCw29ztcebz4sKVqjSMah/7vDCx/ff3nUe52K/bXN5l20Uh4z81+lpufGeA/Lz77QzZOmO35j5er7dsZNrcxy2CXi4q7rYO9mfNLbB7kXJBayczwB0KhTQyMqK7d+8qGAzqxYsX2traUm9vrzo6OrS6uqrXr18rl8upWCyqWCyW/c6eN6dv4l6/r/OC2c7n1DAMhcNhDQ4Oqr29XYlEQsvLyzo8PFQ+n78wMu527u/yumtrazU+Pq7h4WHNz8/r66+/ViqVKnvMNzFXt3d8uXtQKBTOfAfLxbTPi1PbOQPlznErDcM7x3Q7r3NMAtYAAAAAAAAAAAAAAAAAAAAAAAAAAOAvEQFrAAAAAAAAAAAAAAAAAAAAAAAAAACAHzl7fNTkFtGtNPbqxh4CdgaHJVnBYbdgsD2eWy546vaZ29jnXU8l11hJ1Nn5+Xn7OsOwbhFkc7sz1lwujuzxeFyPd/u5ks8rDf1+m9xC026ca2k/zufzvbVWbvezVCq9tX7Oz93ObxiGFYeuNAxdLvZr/9kwjLJz9fl8GhgY0O3bt2UYhqanpxWNRtXd3a2Ojg5Fo1G9fPlSJycnZ+LV5jhuPzu5hdHdPv+2VPpdKhaL1lrV1taqo6NDhmFoc3NT29vbyuVy574/yp37u4p32+PVN2/e1P7+vp4+faqjo6O3vg+mSt5fHo/HWie3Y8p93yu9fud3x875Xrdvd/53wflet7/3zguY28e0X4/zd+dY34f3HAAAAAAAAAAAAAAAAAAAAAAAAAAAwLeBgDUAAAAAAAAAAAAAAAAAAAAAAAAAAMCPWCWh3ffd57zQqDMUakZPzbiqM15t5xYgPe/8bsFU53iVXJvzWty2n3dcudCsM9pabl/neG6RV7eY9bsEWi+K15YLN3+T8Ve3e+v2DJwX7nWGmiUpn8+f2f+8aLf9eXR7Xi+KoVdyDsMwrGPt87XP+byIryS1t7drcnJSyWRSc3Nz2t7e1sDAgAYGBnRwcKBnz55pf39f+Xz+rbmUu6bz7uN3EXF+l/Obn0ciEQWDQW1sbGh2dlaHh4euYWXn++OiNfq22c8XCAQ0MDCge/fuyePx6MmTJ9rd3T03Tv8+53Eeb49Juz3D9vi18xi374U5X6/X6xqZtm8rFArW787vsP07ac7lomfV7flxjuP8HAAAAAAAAAAAAAAAAAAAAAAAAAAA4C8NAWsAAAAAAAAAAAAAAAAAAAAAAAAAAIAfMTMYbXKL6Np/d4vpuo15nmKx+Fbw1B4lNQOjzqCuW4DWHiktF1K2B0vLxYArCZeWC3Kfp1zA+7z5mT+bf+xRV2cU1i0+az9foVBwPeef6rwY+Td5Dvs9cwtZ2/crFyh2zln6Y0xX+mMw1/nMmGFpk31ct/m4haAvWh+3573S59E8dzgc1tTUlPx+v168eKGNjQ11dnZqZGREmUxGL1680N7ennK53FuBbOd5vq/hXue9ueidY67n7u6uPv/8cyUSCW1vbyuXy701ZrmA97f5TFfK7/err69PH374oZqamvTb3/5Wq6urZyLsTm7Perm1O+89Xu4d54x8O59/t/i3878vznew2xzczmm+252fn3ft5X62f8/KHQcAAAAAAAAAAAAAAAAAAAAAAAAAAPCXhIA1AAAAAAAAAAAAAAAAAAAAAAAAAAAA3mKPfEpvB1Ht4U+3MKpbnNr82fxjDwO7Hef8zO389hitM6bqDHO7jVsuwHpeDPaiGLQzcuw8xrxue5TVPr4ZULbHjZ3jnxfZdR5TLhRuP2+5+2X/3DnPcr//qcqtr7mm9sB0uXtabl5uz42TGVh3jmsfwx6/Ne9TpUF3+/NRLkBe7m+7sbExK169urqqhoYG3bhxQx6PR0+fPtX6+rqKxeJb37Pzwttu5/q+hX2dc3dbm+3tbe3u7pb9Dknnf5+/y2v2eDyqr6/X5cuX1dPTo0ePHunp06c6PT29MGzu/K6+yz7OdT3vu2X//KK1sn9ufx6d30VzW7nPzQi7GZ8/753mdn5nsBoAAAAAAAAAAAAAAAAAAAAAAAAAAODHgoA1AAAAAAAAAAAAAAAAAAAAAAAAAAAA3kklEdBycVwzQOwMqTpjqPbQbiXjO7edF1y27/M+EdZKlYsPVxJcrSTG6rav/Wd7CNttDPvPlUapv+149UXcnhd7kNktlm6fqz2Gex7nuroFpS8KQLvFgu3PvvM4t2PNWK9TKBRSMBjU/Py8tre3FYlEdPPmTRmGoenpaa2srKhQKLiGss2fnWHr8+bzXSr3jijHjIm73R/7PXrXZ//PwTAMVVdXa3h4WF1dXZqfn9eDBw+USqUufGZNlXx3ndH68467aHx7kN38vdy+bvs4g+7lovJu53L7vJzzYvDft0g7AAAAAAAAAAAAAAAAAAAAAAAAAADAN4mANQAAAAAAAAAAAAAAAAAAAAAAAAAAAM4NeNpDp24xZrdYrHNse4TWDMw6x/H5fCoWi2+FdZ0R4D/lWt5nv3c5t1sktdz8ndvs+7mtUSXz9Xg8MgzjzO9usVq3ObxrxPui+/5NqWQdnAFdt2P+lEj5RVFg+707L25dLBbPDTE748vOZ6dUKsnn86m1tVWBQEAnJycKBoO6dOmSamtrNTMzo8XFRWUymYpC6Bf5tu/vRTF3t32dLno/OIPclTwL3xVzbvF4XE+fPtX29rb29/ffa75uz+G7fN/Lza/cnCvdv9L3qfN7Usk71NxWLgrvtq+5f6WBcAAAAAAAAAAAAAAAAAAAAAAAAAAAgB8aAtYAAAAAAAAAAAAAAAAAAAAAAAAAAAA/Um6hX3O7yRkPdcao7X87j3V+5tzHHlf2eDzK5XJn9nGGUZ2RYud4FwVZzwsuO6/ZeZ5Kr6tcbNW+/bwgq3N9zbVxxlXt984eRTYMo2wA2TkH+3bnOrvNq5Jt36TzgtDOfZxKpZIMw3C9l+Xi0s7xKglanxcItu/rtr/bec973sxtoVBIHR0d8vv9CgQC6u/vV1NTk5aWlrSysqJUKmU9L5WG6d3m/77396L7Ve47/E0/T+fd53LbK3nmvm3pdFrLy8taW1tTPp9XoVCQJCtMX2loudJ33XfB/gzY3192bvfAXAO3fcsdc9E8vs9BcwAAAAAAAAAAAAAAAAAAAAAAAAAAgG8CAWsAAAAAAAAAAAAAAAAAAAAAAAAAAAC8k/NixxfFgMvFU81Iq7mPM9LqFoB+1/l8U5HSSsaxx6fPC+e6RXyd11osFt8KVtuPKRekdo7vPGe5CLP9/JXGwb9t5ULVJnNN7OttrpubcvH184Lrzv3d9ikXqy53jDM07rxnbvcxGAyqvr5exWJRfX19am9v197enpaXl3V0dPTW+cvdXzMG7PyOlFszZ3z6ojh2uTUoF/k+79j3CRPbr8/+fJQ7b7n5/rkVi0Vls9kLr/9dg+xun9t/d/veX+S8+1tJGP6iSLzz/Xje/J1rdNF/c9zmDAAAAAAAAAAAAAAAAAAAAAAAAAAA8JeIgDUAAAAAAAAAAAAAAAAAAAAAAAAAAABcA57fVNTTGep1brdHf991POc8y0WAzc++zSCz25jlAq8XRaadx7qtlT16fNH5/5QgrVs49/sQ+jWdF2A+79lyC+FWEvx9H+dFfZ3zL7eP+fz6fD5FIhEFg0H5/X5tbm7qzZs3isViyuVyKhaLruvwp963byIGX0nQ+ryI9rueq1zU+PuuknlWEkgvd8xFIe93Pa/b+/aiMHql13jR2O86xnn7AQAAAAAAAAAAAAAAAAAAAAAAAAAA/CUiYA0AAAAAAAAAAAAAAAAAAAAAAAAAAPAjZQ86l/vMGUt+lwhuucDynxqndQsPO+ft8XhULBbPbHc71v55uXjz+0SvL7rGcvHicsc574N9e7l1da69/Vh7EPs8lUa5v01uAW3n7+8yz3L7X3TPykXT3c7lvCfnzaUS9v3MSHVtba3W1tY0Pz+v7e1tpdPptwLn541Tadj7XZVKJRmG8d7fl/d55srdm7+UKPE3+e4xx7Pvd9F73fzMMIwL53NRCN7t3eM8/7uG5O3/LbtoP7d9/lKeEwAAAAAAAAAAAAAAAAAAAAAAAAAAADcErAEAAAAAAAAAAAAAAAAAAAAAAAAAAPAWZ1i5EuWizJWe608NW7uNWcm4lUS5L4qiXnT8eaFwt/Vy215J1PW8CHa5YyqZ57ftvPO6PR/lgrfnBb3dxnvfZ7bcPJyfleMMituPuSgufnx8rOfPnyscDmtra0v7+/vKZDIXBqmdQflv03lxYju3NfqmnkG36Duh4vKc4e93eVacz/K7/jej3JiV7GcqFovnfn5RdJtnAwAAAAAAAAAAAAAAAAAAAAAAAAAA/KXy8A8pAQAAAAAAAAAAAAAAAAAAAAAAAAD44fJ4PPxDQbw3wzDk9XrLfu6Mvl4UKK0kEusMkb5rpLSSse3x1Uqiz+/6ufOclV7DeddeyXk8Ho+KxWLZ+2BuPy/KfNE9qvRef9Muuk/nBcDd9rd/Vu5ZdX5+Ufza7V6/z9qc992R/vi9dAaundHtYDAoj8ejTCajQqFwbvT6u/j35JU8Pxc9x/w7+B+Wi+6nUyWR7Pd9L1TCfu5SqaR8Pv/eY/2YlEqlb6YwDwAAAAAAAAAAAAAAAAAAAAAAAAAA/mx83/UEAAAAAAAAAAAAAAAAAAAAAAAAAAAA8N2wB4/Nn4vF4lufSZXFZMsFo8ud19zfGRK17/Mu13HRnOxjv08c97wwtNvv7xqsLjcvc43s96nS+Z43P6fvMhh83rNz0fZ3va/22PN5Y1w03rvc+4vY52J+B887RzqdPvP79ylebZ7XGd22z+dPCQ/jz6/S/w5U+p1xvvfP2/9939fnzdH+c7nvDgAAAAAAAAAAAAAAAAAAAAAAAAAAwF8KAtYAAAAAAAAAAAAAAAAAAAAAAAAAAAB4i1ukuVxc2bn9vBCzOY7H45HX61VNTY3C4bCOjo6UTCbPnLPSaKrbvvZAcSUR5+9DwLTcHNwixZVGu03vEiKvZE5/Ts7rOe/ayz2P5jhuY7uN4faZ2/fgmwwxO8c97/dyx7n9Xs43HQa+yLt8774Pzx3+TSXvlHe5Z9/Evu/63XPb33yn8rwBAAAAAAAAAAAAAAAAAAAAAAAAAIC/ZMZ3PQEAAAAAAAAAAAAAAAAAAAAAAAAAAAD8+TljnqVSScVi8a39Lgp8nhcXvSgwWl1dreHhYU1MTCgcDr/T+OXm6fz5m1LuWr6JgHEl871oH+d6l9u/kvtS6Zz+nM57/iqN0F4Usn6fa3Ye57a+bvtUMu55nxWLRevP9+k+2ZlrUS4i7xYa/yaD4Hg/5e5BJfew3Da348ud2+1PJfOp9Bz28xiGwTMHAAAAAAAAAAAAAAAAAAAAAAAAAAD+4vm+6wkAAAAAAAAAAAAAAAAAAAAAAAAAAADgz88eBnULyTp/f5eQtNs45s/m34FAQH19fbp27ZoODw+teLb9XO8TE37Xebkdd17o2O14+3bDMCSpbAz8m1IqlS4M/ppr6YwrfxPzuGiN/lTl7okz0l3umO8qSnvRHN53vb5PkepKn6F3fd6+jefUPpfv0xp+n30b61Tp8/K+x1ayn/nO9Pl8qq6uVnV1tUqlkhKJhI6Pjys6BwAAAAAAAAAAAAAAAAAAAAAAAAAAwA8RAWsAAAAAAAAAAAAAAAAAAAAAAAAAAIAfqYsiv39q9NV+rD1O6/f71dHRodu3b6uhoUEvX758p4BoJfHkSgPGF43h8XhUVVWlQCCg09NT5XI5K4TqVFNTo0gkokwmo5OTE+VyuYrOU27uzvj0eXN3u1f248/b9j7c5vWukdpKgtPlYuPljrXfm0qC5m6x9otUGu/+cwSTL4qxn6fcvu8T4a7kXVLp+e3HEJ1GOYZhSKo8XO/xeBQKhdTQ0KDu7m61tbXp+PhYc3NzSiaTKhaL3/qcAQAAAAAAAAAAAAAAAAAAAAAAAAAAvgvGdz0BAAAAAAAAAAAAAAAAAAAAAAAAAAAA/PmZcWbDMGQYxrkh30pCwJUyDEORSETXrl3T+Pi4otGoVlZWlM1mrTldFMN1iw/bjzW32383r/G8gLJ9Lezx6t7eXl2+fFnhcNh1PuZ+w8PD+slPfqKBgQFVV1e7BlbLHe+c17uGpt32da7T+4z7bTrvfrs9k1JlAW7nPudd93lrVG4c5/zLXZvbNq/Xaz0X3wT7nL4v99WukkC8/XtnGIaqqqpUXV0tr9dbcYj+T5kH3s/73BvzXen2/S73PS13Huf3tNx45hjBYFA9PT26evWqbt26pYGBAVVVVSmXy/F8AAAAAAAAAAAAAAAAAAAAAAAAAACAv2i+73oCAAAAAAAAAAAAAAAAAAAAAAAAAAAA+PMzY7Hmz87Yp7nNvr+d/TN7jLRYLLqeywyM+nw+NTY2qre3V5ubm3r48KHi8bjrOexRYec2t8/czlvu90pCxB6PR6FQSH19fYpEIpqZmXkrSm0YhkqlkoLBoPr6+tTa2qrl5WXl83nrmu3Xbx7rdh3ONXe7hvM4r895Dvs87D9XEm91u//nPSfO673oes6LkpdKJeu5crtv5ebvjE9fdM5KwtjlrsP5mdtYXq9XoVBIuVxOmUzm3O/Ku3B+f51zfJfxnGta6ffrfebsdqzP51N9fb3q6uq0tbWlZDL5vYqu/9C87zNgP6bce8m5rZJzVFVVqampSYeHh0qn067HXPQdOO+8bu9A8/Oamho1NTWpqqpKqVRKyWRSKysrOjo6UqFQuHDuAAAAAAAAAAAAAAAAAAAAAAAAAAAAP1Qe/rEuAAAAAAAAAAAAAAAAAAAAAAAAAAA/XB6Ph38oiPdSU1Mjv98v6d9i1sViUcVi0TUyXC62K70dCnbGje2xZ/v5zDBxuaBzuXNcNC839nHs86vkOPt12Ofp8XguPL/zvHb28ez72n+3h4TdotHO6Lh9bLdzuM3NZF6L2z2wR8rtsVe3tTkvXn1RbNoeQrdf08nJietxAH5Y3ifS/k2d1+fznfnvXT6fr/i/IfijUql08X84AQAAAAAAAAAAAAAAAAAAAAAAAADA94rvu54AAAAAAAAAAAAAAAAAAAAAAAAAAAAA/rzsMWJJVkja/LlUKlmx6fOUi5CWi1CXO7Zc8NgZRnZudxvvoih1ufCzfczzxnAeX85F4W237eViz865us3Pvt0eoi63rvbxLwrKOtfbjI+fN/+LxnPO2y12bv5sD2YD+GH7LuLV5nlzudx3cm4AAAAAAAAAAAAAAAAAAAAAAAAAAIDvEgFrAAAAAAAAAAAAAAAAAAAAAAAAAACAHxlnvNr+t5MZO7YHhZ37lgs+nxeGNiPLkt6KZV8UfzbnYp/PReHqcnN1jnPeHJznqTRi/S6fOdeqXKjbPo55DeetQ7nxnMeXO7ZYLL4Vm7bPyRnFdrvO8wLX9nk4z/FdBW8BAAAAAAAAAAAAAAAAAAAAAAAAAAAA4IeOgDUAAAAAAAAAAAAAAAAAAAAAAAAAAMCPjBkINn92hpvt0WHn724xarfAsP24SgLJbsc4w9b2sdy2S/8Ww3YLPzvDyM7Adrlz2ePdbvs418IZkTbP4xaXdo5rGMaZQPd5wW238exhcOd9dH5uP799TOf12I9xW9dykW3nOZ3Pg/mz1+t969z2MZ1zBgAAAAAAAAAAAAAAAAAAAAAAAAAAAABUhoA1AAAAAAAAAAAAAAAAAAAAAAAAAADAj4w9DO2MOpvbnJFhO7dAs5tisfhWGLlcfPqic7od4wwjm+d0i3O7RbQNw3jrvOY87RFp53ndfrb/bo8wezyestFot3VzBrad13vesU72a3cLYduD0fZIt9s12u+ffZthGGfm5Zxbufi1/Rkst87lYuQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMoQsAYAAAAAAAAAAAAAAAAAAAAAAAAAAPiRMQxDXq/XNeAs6a3gsnmM22flAtXOYLRbvNoeUD4vXO0MOTvn5Iwn26/JHrO2z6vcceZ+zut0jmOPZ5cLUZ8XmbZHu93Ob253uxflxpPOhqjdPrdfw3mc99LtOPMavF6vNc9KY9Pl9nOLgFe6BgAAAAAAAAAAAAAAAAAAAAAAAAAAAACAswhYAwAAAAAAAAAAAAAAAAAAAAAAAAAA/MiYceJisfhWWNotdFwqlZTP5+X1eq39nTFjZ2TaLVbtZI7jFse2B6LdxrfPzS0Wbf/dGYU+bz6lUumtCLTbvma02S2IbYbBnecsd/1u11fuvOZ2531zroFbWNwtQF1uDs7zuc3Lfk5n/Nvt/tvvtzN07jyXfX0IWAMAAAAAAAAAAAAAAAAAAAAAAAAAAADA+yFgDQAAAAAAAAAAAAAAAAAAAAAAAAAA8CNjjxo7Y9D2fUzmPoVC4czn58WZneexj2MPIZtzKJVK1vjlYszmz27ntY/lNn/7sW7hZ2eI2h6zNpk/u53HHtw2/5gh62Kx+FbU2e0aneczA+Pm587ws/M6nWMHAgF5vV6dnp6eu27ONXYGrd3i1+bnZgjdnJv5s3nd9rVobW3VyMiIjo+PtbCwoHw+r3w+f+a5cpvLRc8ZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAdAWsAAAAAAAAAAAAAAAAAAAAAAAAAAIAfEXtYWXKPOpvbzf3dnBe7dp7P/pkz0nzePM0gsn3bRfNxi2U7z+cW53ZGsu37OSPf5cLf9ph1KBTSwMCAWlpatLGxodXVVeXz+bfGtV9rueh2uWt1WxfDMFRbW6vR0VHdvn1bwWBQv/nNbzQzM2Pta8amndfkXBvnejnj4+XmZY95S5LP51N3d7f+6q/+SpFIRLOzswqHwwoEApqentb+/n7Za3XGrQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlSNgDQAAAAAAAAAAAAAAAAAAAAAAAAAA8CNixo6d0eZyygWpncFl+2flji/3uVukuFgsvhVxLhevds6hXIzbOf9y+7sd6xZ5tq+BuaaGYSgSiejWrVv64IMPdHh4aAWanWOa53YLiJ83F+e2Uqkkr9er6upq9fX16ac//alu3bql+vp6LS0tqVAouEaonWOcNye36LfbZ05+v1+9vb362c9+pqamJkWjUbW3t6uzs1MLCwvW3Jz32oyO2wPmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB3Q8AaAAAAAAAAAAAAAAAAAAAAAAAAAADgR8QtDFxJPNm5rzME/a7jXDS+nRmHPm8/Z1DZDDDbw832Yy+KYZcLW7vFv81tXq9XTU1N+vDDD/WTn/xEp6enmpub09bW1lshZud83KLQzm1uUWnzvHV1dbp8+bLu3r2r5uZm7e7uKhaL6dNPP9Xm5uZb5yw3Zrl76Lb+5jWVWyvDMNTV1aWPPvpIjY2NWllZkd/vV3t7u7a2tvTo0SMdHx+7ns8c2y1uDgAAAAAAAAAAAAAAAAAAAAAAAAAAAACoDAFrAAAAAAAAAAAAAAAAAAAAAAAAAACAHxEzNuwMKr/LsZLe+vuiILRdpQFp+/imcvN2hphNZrDbPKf9b8Mw3roO+7mdQWm3vw3DsCLSXV1d+sUvfqFbt24pHo/riy++0KtXr3RycvLWeG7XaP5tjnleXNqMV/t8PrW0tOj69eu6du2aQqGQMpmMMpmMnj59qq+++kqpVMp1zZzzcJtTuTUoFotlA9+mYDCo4eFhhUIhzc3NKZFIqLe3Vzs7O5qentb29va5IfV3eaYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG8jYA0AAAAAAAAAAAAAAAAAAAAAAAAAAPAjYsaRpfKRaDtn7NkegLbvY47jDB6bf+zR7HKRZLdwtNt87CqZu9v5yp3T7dz2a3D7rKqqSqOjo/rrv/5rXb16VZubm/rss8/07NkzxePxstftHN++T7lAtH0fr9erzs5O3b59W5OTkwoGg/J6vYrFYnr06JFevHihw8ND1/k716Xc2pj7Ocew72e/Jvs5CoWCNjY2tLe3p729PRWLRe3u7iqfz2t3d1eZTOat8zvX5H1C6wAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPyJgDQAAAAAAAAAAAAAAAAAAAAAAAAAA8CNiGMaZiLXJGZN2BqrLhYvtnxuGcWYMt/3O43Zue2jZLZjsNg+36ymnXJTbPqZb5Nr8Ew6Hde3aNf31X/+1rly5orW1Nd2/f9+KR+fz+TNzcws1m9vN9XOLgzvPbxiGOjs79cEHH+j69esKhULKZrNaWlrSkydP9Pr1ax0dHVkhbLd1cEbFnddXLBatbeYzUygUXMezX4f5eS6X0+rqqkqlknK5nCTp4ODA+t0+vn0M+/N5XqAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA+AtYAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ImbAWiofqbZvc7ooTu38u1yMudy5zHm4xaLd5uk2pjOA7WRGm537uF1TudC31+tVQ0ODPvroI929e1fj4+NKJBL65JNP9OzZM8ViMeVyOdfznxeUtm8375N9bmbgua2tTT/72c/0s5/9TPX19drc3NT09LSePn2qjY0NJZNJFQoF12s4jzNWbo97l1tXwzDOhLINw1CpVFKhUFAqlTozdzPo7TaOebx9f+e9AgAAAAAAAAAAAAAAAAAAAAAAAAAAAABUjoA1AAAAAAAAAAAAAAAAAAAAAAAAAADAj0i5ULU9HlwusFwuhOwMQJsRY3v42C0ubTJDzeb+9nCzOU4l1+Gco/mzz+dToVAoG5M297WHk+3hZvs8SqWS/H6/2tvb9dFHH2lyclK1tbXKZDL6/e9/r0ePHikWiymfz78VZy4Xyi43d7f9zHD2Bx98oI8//lgNDQ1aWFjQV199pWfPnmlnZ0f5fP6t8LczLm3+scfM7ft7vV5VVVWpVCopm81agWrzb5M9Xu2MXTufo3L3rFxk3G07AAAAAAAAAAAAAAAAAAAAAAAAAAAAAKByBKwBAAAAAAAAAAAAAAAAAAAAAAAAAAB+JMqFk83PygWhDcOwQsf2ELQ9WG2PTweDQUUiEUUiERUKBR0dHSmbzapUKimVSqlQKLwVhzYD0YVC4a0gsn1f5+9uAepisXhmXK/Xq1KppEKhcGbezsC0W/zaPrZhGKqurlZ/f79u3ryprq4uxeNxBQIBvXz5Ul999ZUODw/fimWXCzG7raN9u31OHo9HPp9PTU1NunXrlu7du6dCoaD79+/r0aNHevPmjU5OTqz1LxaLMgxD9fX1KhQKSiaTCgQCam5u1unpqaLRqEqlksLhsAKBgI6OjpTJZOTz+VRXV6e+vj51dHTo+PhYs7Oz2t3dVbFYfOsZcoav7dd6XgTduV+lYWsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOUIWAMAAAAAAAAAAAAAAAAAAAAAAAAAAPxImBFqexjZGUl2/h4KhdTa2qrm5mbt7e1pc3NT+XzeGrOqqkrV1dUKBALKZDKqrq5WX1+fRkdH1dzcrHw+r/39fR0fH+vo6Ejz8/PKZrMqFos6OTmRJNXV1amjo0OGYSgajerg4MCKUJvhaI/HI7/fr6qqKhUKBaXTaSt07bw28ziv12vFq81xzAhzuWCyGWO2r4UZj66vr9f4+LimpqZUX1+v9fV1K9b9+eefa2tr68y8zaC3z+eTYRjK5XLK5XJvxbfN/e0/2++D1+tVbW2tent7de3aNV2+fFm5XE6/+93v9PTpU8ViMXm9XnV2dqq1tVXBYFBHR0eqqanR5OSkCoWCEomEFRWfnZ3V6empmpubNTY2Jkl6/vy5Tk5O1N7ersuXL+vKlSuqra3V3Nyctre3tbe3Z83NLULtnHclkXD7eGaw3H6MuZYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPdDwBoAAAAAAAAAAAAAAAAAAAAAAAAAAOBHwh4PdoaFTYZhyDAMVVVVqaGhQQMDA7p+/bpaW1v16aefamdnxwoLh0IhdXV1aWhoSF6vV0dHR2pubtbw8LDa2trU0NCghoYGeb1exeNxzc/PKxwOy+/3a39/XzMzM6qqqtL169d17949nZyc6Pe//71OTk6Uy+VkGIZCoZCCwaCqqqrU0tKipqYmJZNJ7e3tKZVKKZvNWvNNpVJKJBLyeDwKBAJqampSTU2NYrGYDg8PraC0W0DavhbmOpnh7EAgYIWdR0ZGlM/nNTc3p8bGRnV0dOj169fa3NxUa2ur8vm8Dg4OlEwmVSqVVF9fr9bWVivOHYvFzoSZ7eFmZ8TaMAxVV1ero6NDIyMjun37tkZGRrSzs6MHDx7o8ePHSiaTikQi6u/v18TEhLq7u5XP53V4eKja2lo1NzfL6/WqublZkrSwsCC/36+pqSldu3ZNU1NT2t/fV01NjTwejwYGBtTR0aFisaiVlRXNzs4qFou5BqbdItXl4tb2490+d4aty90fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDlCFgDAAAAAAAAAAAAAAAAAAAAAAAAAAD8SBiGIelspNnk8Xjk9/sViURUX1+vlpYWDQwMaHx8XBMTEzo6OrLG8Pv9qq2t1fDwsG7evKnu7m7F43Fls1mFw2Elk0ktLCyou7tbzc3Nam5ulmEYam1t1YcffqjW1la9evVKmUxG3d3d+tWvfqWWlhY9ffpUpVJJPp9PgUBAbW1tGhgYUH19vaqqqtTa2qqWlhblcjkdHh7q+PhYR0dH8nq9CgQCmpmZ0atXr+TxeDQ0NKS7d+8qGAzq/v37Oj4+VqFQeOuay0WsDcOQ1+tVOBxWb2+vrl27pt7eXq2trWl6elrj4+O6c+eOtra2tL+/r8uXL2tsbEy7u7t6+PChotGo6urqNDExoa6uLu3t7eng4OCt85vnc57fDGePjo7qzp07Gh8fV19fn/b39/XVV1/p5cuXyuVy6u3t1eXLl3XlyhU1NDQoHo8rnU6rqalJ8Xhcv/nNb9Te3q6PP/5YGxsb+vLLL1VbW6s7d+6ovb1dxWJRdXV1+sUvfqGmpiYdHx9renpaDx8+1Js3b3R4eKh8Pi+fzyePx6N8Pv/WXM/73W27GbN2W//zItcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHdDwBoAAAAAAAAAAAAAAAAAAAAAAAAAAOBHwh6tdsaTvV6vmpqaNDExoZGREbW2tqqqqkrJZFJ7e3taWlrSxsaG/H6/Ojs7df36dd27d081NTVaXl5WsVhUfX29tra2tLOzo66uLrW0tKhQKCiRSCiXy6mmpkbHx8eKxWJqamrSL37xC42Njcnr9eof//Efdf/+fW1vb6umpkajo6O6ffu2Ll26pNraWp2enmpzc1MHBwdqaWnRxx9/rHA4rKOjI2WzWZ2cnGh/f1+bm5tqbW3Vv//3/15jY2OamZlRJpOxotSlUknFYvFMxNsZSvZ4PKqqqlJTU5PGx8d1/fp1hcNhTU9P6/Hjx/J4POrr61NTU5OOjo509+5djYyMKBgM6l//9V/l9/vV3d2tS5cuqaurS9FoVDMzM9rd3VWxWHS9L4ZhyDCMM3MLBoMaGhpSOBzW3t6eisWi5ubmNDc3J0mamJjQ3bt3de3aNRWLRc3MzCiRSKixsVHr6+t68OCBdnZ29Itf/EKpVEonJycaHx9Xa2ur1tbWdP/+fdXW1qqzs1PDw8OSpGfPnulf/uVftLS0pHw+r2AwqIaGBhmGoePjYx0fH1sRazNE/S7sx7hFrO2fua0VAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKByBKwBAAAAAAAAAAAAAAAAAAAAAAAAAAB+JDweT9los2EYCgQCikQiymazev78uQ4ODtTT06Ouri4tLCwon89rYmJCP//5z/XBBx8omUzq8ePHkqSWlhbNz89rYWFBw8PD6u/v19HRkU5OTjQ6Oqp8Pq/Z2Vl9+umnqqmp0S9/+Uv96le/0vb2tv77f//vevr0qfL5vDo7O3Xz5k3dvXtX4XBYuVxOJycnWl9f12effaatrS3dvn1b/f398ng8ymQy2t7els/nUzgc1o0bN3Tnzh1dvnxZn3zyif7pn/5J0WhU1dXVqqmp0dHRkVKplLUGbvHqYDCorq4u3blzR1evXlUikdA//uM/am5uTrlcTpcuXVJvb6+Ojo50+fJlhUIhbWxs6JNPPtGTJ09UW1urS5cuqbq6Wi9fvtTz58+1v79vhZ/t62//2z4fj8ejZDKpzz77TJ999pk+/vhjeTwebW9vKxgManR0VOPj4xocHFQoFNL+/r7q6+vV2Nio58+f6/79+9rZ2ZFhGEqlUvJ6vbp27ZpWVlb0ySef6OXLl0okEiqVSvL7/fr44491/fp1bW1tKZfLqaWlRZFIRM3NzQqFQtrb29ObN29cY9Nuz5mksgFqr9fres32az9vfAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAZQhYAwAAAAAAAAAAAAAAAAAAAAAAAAAA/Eh4vd6yceBsNquNjQ1tbW3J7/erp6dHP/vZz3Tz5k2lUinlcjn95Cc/0a1bt3TlyhXlcjnNzs6qs7NTPp9PX375pb7++mul02m1tLTo6dOnisViGhkZUV1dnZ4/f67/7//7/7S7u6tAIKDq6mpNTk7qk08+0czMjOrq6jQ4OKif/vSnun79ulZXV7WysqKWlhYtLS3pX//1X7W4uKi+vj4NDg6qtrZWS0tL+t3vfqeTkxP9+te/1i9+8QsFg0E1NzcrHo/rs88+UyKRUHd3t4aGhhQOh/Xll18qnU4rn8+/FUyW/hjybmlpsebx4sULffLJJ9ra2lKxWFRNTY3u3LkjwzD0P/7H/9Df/d3fqVgs6n//7/+t3d1dDQ4O6vLlyzo8PNT9+/e1sLCgZDKpYrFYNphtKhQKKpVK8nq9KpVKyuVy2tnZUSAQkM/nU1VVlXp7e3X58mX5fD69fv1ay8vLunPnjlpbW5VMJvW73/1OX331lY6Pj5XL5eTxeKz7EgwG9erVK21vb1vnMs9rbhsZGVF7e7uCwaA8Ho+Wl5f15MkTra2tKZvNuoa37ddg/8y53dwWDocVDAZ1cnJixcTd9iNgDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/GgLWAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxIej6dsGLhUKqlQKKhYLCoYDGpgYED/6T/9JzU2NmppaUn/5b/8FxmGodevX6u2tlb19fVqb2/X/Py8PvnkE83Pz1sx4n/5l3+RYRjy+/2KRqN69OiRFhcXdXh4aJ0vHo/r5OREknT37l1NTU1ZMWxJ8vv96uvr06NHj/T73/9ea2tr8ng8CoVCyufzevz4sX7/+99renpa4XBYNTU16uzs1PLysnp7e3Xr1i1NTk7qxo0bGh0d1e7urn7zm98oGo1aIWb7Ophr4/V6JUlbW1taXV3V06dPlUqlrM/D4bD6+vo0PT2txcVF5XI5nZycqL6+3gpJf/HFF/riiy+0tbVlhbLdzidJxWLRGtu+TZI1l0KhoI2NDV25ckXj4+N69eqVHjx4oJWVFVVXV2t1dVU1NTVaXFzU+vq6stmsdZzH47Fi2h6P58x87OdbWFhQMBjU1atXVVNTo9XVVb18+VKrq6s6Pj62Atz258V8lgzDsLbZ/7ZfpykcDuvevXsaGBjQ559/rlevXlnX6/F43hoLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPD+PPzjbQAAAAAAAAAAAAAAAAAAAAAAAAAAfrg8Hg//UBAV8Xg8qqmpeSsobP/cDAhHIhHduHFD//W//lcrYD0zM6MHDx5of39fQ0NDqq6u1sbGhjY2NlwDx/Ygs7nd3FZVVaW+vj79x//4HzU6Oqp0Oq35+Xl99dVX8ng8unPnjrLZrKanpzU/P69EIqFisSjDMKxYdS6X09HRkfL5vDVvwzDk8/k0PDysv/3bv1V7e7t2dnb01Vdf6eHDhzo8PLTizcVi8Uw42ZyrOZZ9nezjt7S06ObNm1pcXNTR0ZH+w3/4D7p7966KxaLevHmjTz75RLOzs0omkyoUCmfWuFAoWMFn57/xdVsvM+bs8XhUXV2tpqYmFYtFxeNxpVIpa03sIWozWm3+7rw2t5i2+ZnP55PX67Vi5mbQ3C1M7TZn+/jm5877X1NTo/7+ftXU1GhpaUm7u7tnxjMVi0Wl02kBAL4/SqWS+/9EAAAAAAAAAAAAAAAAAAAAAAAAAACA7y0C1gAAAAAAAAAAAAAAAAAAAAAAAAAA/IARsEalvF6vAoHAmSiyG8MwFAgE1N7ertHRUWUyGc3Pz+v4+Fi5XO5MzNgegy4XN3YGju0R6/r6ekUiESWTScXjcWWzWUmSz+dTsVg8cz5zDDf24LNhGPL7/aqurpbf71cymVQ6nVYul7OC1c4gszknZ4DbLWRtbjfXtL6+Xg0NDcpms9rf37fC1fa1ca63WxDaHNcZr3a7drdQuP1cbvfBbc2c45h/OyPX5/17ZHss25xzubGdv5+3Pvl8Xvl8vux5AQB/fgSsAQAAAAAAAAAAAAAAAAAAAAAAAAD44SFgDQAAAAAAAAAAAAAAAAAAAAAAAADADxgBa1TK7/erqqrqTKjYHp62h5k9Ho+8Xq8VVHb+sbMHjE32Me2/O6PM5udmeNo+H/t45lzd2KPPzti0/dxu87PHky+aq3N8M27tDC87r8E5N2co29xmjz/b2dfcHqt2BqKd+5Wbu/06y91L+zzczuf83PzduYbOfc/bRsAaAL7/CFgDAAAAAAAAAAAAAAAAAAAAAAAAAPDD4/uuJwAAAAAAAAAAAAAAAAAAAAAAAAAAAIBvnzPuXC6CbMrn82+Fne2fm7+XixY7t7kFs+3xa/v53aLN5ebpFrZ2nss+F2dw+bzwtvNn+z7lgtr2edmvwzyfW1zaPrYzHO2cn9frPbMG9jD1eQFp8/z2e+a8ZueaVRKkdlvX88YoF/IuNy8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAwPsjYA0AAAAAAAAAAAAAAAAAAAAAAAAAAPAjUUkg2r6vW9DZPo5zTJNbiNgtUGw/h2EYZ+Zjhpudx5n7OI8z/y63n/OanNd/Xsy7XHzZOYY554ui3s7t5WLVbtdjX5dKx3buI8k1Vm0//3n33O285YLebvHrcut7URAdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBuCFgDAAAAAAAAAAAAAAAAAAAAAAAAAAD8CLgFnt04Y8SGYbiGkc197S6KHp8XJS4XQC4XwzY/cwaZy82hkvnb5+IWUjbPVy74bf7tFv52bnPGtC+a358afS4X37YznxHn+rrdZ7frcJ7L7RouQsAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL45BKwBAAAAAAAAAAAAAAAAAAAAAAAAAAB+BAzDOBMQdgsQOyPXzoCxGbN2HndedNhtmzNwfFH42i2k7Nxmn4N9PHuMutw53CLL5jhua2OO6bwO5xyd62mPg9v3LRQKb62hfa3t4WzneZxh6/Ou0+PxnJn7RXHpcqFr57gXnfO8iLjbPmaMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwpyFgDQAAAAAAAAAAAAAAAAAAAAAAAAAA8CNRLtpcbps9KmyPDJsRZvt+F8WQy52z3PkuOq5cJLnSc1cyX/vY5hrYg9huEXA7+772fSoNfZsxZzM47RYgtx9bLkLtFgh3hrYvCmG7zdW+Ds5rMz8znxW3+Tq5hcoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO+PgDUAAAAAAAAAAAAAAAAAAAAAAAAAAMBfOHt42RkddoaVz4skl4shO38uF4e2f26OddHn9v2cYWN7HNp+Tfaf3zWK7HYOc4xCoVDROG7nK7du5eLZxWLxzP2xR6yda2K/L+VC0m4BbfNv87qcYe5KrvNdtjvn4zbPSs8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAALgYAWsAAAAAAID/n70/6Y0kTfA0z7+IrtyV+76TRtpCW2hOM3cPXzIyI5GZVVnVKKAb3RhgMIdB9QeYLzB96Euf5jKDGXShDz1zKUw2MFGDqpqszESsHr7ZQjMjjYuRNO77TiqVuuscPERSqRTdSNoazw8wuFFV5JVXRF4RxsXiAQAAAAAAAAAAAAAAAAAA+BOQSCQk6VwIupDYcPp2mQHifHJt7xSlTv8umUwWdAyn+RYi3zlkRpULPef08bMFmnMFrp2+c7oWmdcv2xi5ouPZtsklVzD8qrhcrkuPUcg5Oc250HvjdC/TP7vIurloPDzffsXem4ueh9N+2eZS6HU1DEOmaco0TTU3N6uvr0/r6+va3d3VnTt31NLSoqdPn2p+fl7hcPjKgvXJZDLndXA6v0LeKenh+cxzLnb8fO/XXHOyrqskJZPJM8ct5p5n7pdrjunbpJ9f+n7WtUmfR7b5ZG6X6z6ln2P6eWeec7pkMmn/7gQAAAAAAAAAAAAAAAAAAAAAAAAAAPhQEbAGAAAAAAAAAAAAAAAAAAAAAAAAAAD4E2CFPS8Td832WbFjXPa7i+5TbFA4Pah6EZmh8FyR54tcC6eYa7FjF7NNMfHzyyo2Rp5rjHyB3WLGcYru5vqs2PO46Hnn2i9XTLrQMQvdv9h9nLZxuoaGYcjn86mvr0/t7e06Pj5WQ0ODBgcHtbGxoePj4zPPWOa4ToHobNtl3rts5+QUhs93zrnWRb5rl++8ch0v23dOEe1sMed8su2XeV5WPDrbdpkB60JC8fkC1k5B7GyR7PTvAQAAAAAAAAAAAAAAAAAAAAAAAAAAPgYErAEAAAAAAAAAAAAAAAAAAAAAAAAAAD5ypmkWFDp9W8HOYkPSV+VtH+8qIsxX5SLXvJg18b7GXjOD25kRXKdzzHbf8sV5s333JtZBMWMWc465jlPsMYv5LleY2Zq/y+VSIBCQaZpqaWlRS0uLdnZ2ND4+rr29PcXj8TPbO42ba506BZSzzafQ88ol3ziZ0e1i199ltsm8ftnWT66odr59nILU1t8LvTa53mtOEfTMY2RbD+mRcwAAAAAAAAAAAAAAAAAAAAAAAAAAgA8dAWsAAAAAAAAAAAAAAAAAAAAAAAAAAIA/MU7hznzB0qt2FeO/iblmi6p+6C56jTKjvh+SQud71evoY1o374NUKiXTNCVJJSUlamhoUFNTk9bW1vTy5UttbGwoGo2eWaNOQeZ89zfbvu9Krvk4BaDfxPOZL/CcfvxcY1w0fp7vvhU7dq4QeLYINgAAAAAAAAAAAAAAAAAAAAAAAAAAwIfOfNcTAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJtXaIjzbYSKr2r89yGq/L7Ebq+CU/S32H0+RO/DOnrTLhJ0fp8YhqFkMqnj42NVVFTo8PBQz58/1/Lysk5PT5VMJu1zKiZcXuj6fZfrPF/AOd82b5oVfy7m2mduV0g8Oj00n0wmz9xzpznlGtfpT7ZtAAAAAAAAAAAAAAAAAAAAAAAAAAAAPnTudz0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAvFkXCROjMB/Ttcx2LoUEdD9EH/LcL8IKDb9J6eNfZfQ5lUopHo/r1atXMgxDS0tLev36tSKRiJLJpCTZQeM3cZ7v21pJn09mxPptx7bzXRun+eRaJ7nC1YXOxVoH2fYrZiwAAAAAAAAAAAAAAAAAAAAAAAAAAIAPncE/nAQAAAAAAAAAAAAAAAAAAAAAAAAA4MNlGAb/UBB5ud3udz0FAO+BNxWYdhr/qo5hjWGaprxer0pLS3V6eqpIJGIf0/qTbd/0ueX7zOk83rZsEe5cce43fW8LlWvulvTrbppm3jFzXYtc9zNb3DvbNUyfezKZVCKRyDu3PzWpVOrdLS4AAAAAAAAAAAAAAAAAAAAAAAAAAHAh/L8NAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGC5IqlWiDSZTF7JsXLFWlE4r9crr9eraDSqaDSadbvMGCw+Ph/a/c2ME0ejUSUSCSUSCSWTyYLPx+k9Uuhn78L7Mo+rlnlehZxneoQ6cz3kClJnxqsLOd7Het0BAAAAAAAAAAAAAAAAAAAAAAAAAMCfNgLWAAAAAAAAAAAAAAAAAAAAAAAAAAAAH7G3Faz1+/0qLy+XJAWDQYXD4UuP+aHFRN/H4Lbf71dbW5uqqqq0tLSk7e3tnNt/7BHr9/EefUxyBYWvatxkMpk1alyID/n+55r7ZZ9bt9str9erZDKpSCTyRq5T5vNnGMaZEHmu9WOapv33ZDJ5ZnvLh3xvAQAAAAAAAAAAAAAAAAAAAAAAAAAA3hQC1gAAAAAAAAAAAAAAAAAAAAAAAAAAAB+5QiKvlwn7ulwutba2qqenR8fHx5qbm1M0GrUjox8KwzDsSGp6JLdQ71s81e12q6mpSQ8fPpRpmtrZ2cl5nz/mcDXerqteS+lrNvPZTKVSWdd0vrWeHsL+U+bxeFRfX6+mpiYdHh5qeXlZsVjsQtclM1CdGRvPXBvpP6ffy1wx63yh9Hy/8wr5ffenviYAAAAAAAAAAAAAAAAAAAAAAAAAAMDHw3zXEwAAAAAAAAAAAAAAAAAAAAAAAAAAAMCbc9UhWStAmj5uZWWlbt26pcHBQVVUVFzp8d4W0zRVUVGhpqYmNTQ0yOfzvdP5OIVe05mmKbfbLbfb7biddT4DAwPq6elROBxWKBT6oKOsVtz2Qz4HXJx175PJ5LnPLopou+RyuVRbW6v79+/ryy+/VGNjo1wu13v3nGXOJ9f88t3XQuLV79v5AwAAAAAAAAAAAAAAAAAAAAAAAAAAXJT7XU8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAb1YhkdbLxDobGxvV1dWlcDiszc1NBYPBM5HZD0FFRYWuX7+u/v5+7e3t6dGjR4pEIu8kYprvfhmGoaqqKlVWViocDmtvb0+xWOzMNn6/X729verp6ZFhGFpeXtbJycmbnPYHgSjth+dN3DNrzD/1gLVhGCovL9fg4KCGhoaUSqV0cHBw7n1SzHiZ9yvXNc71ndN9d4pYp49R7P10mm+u4wMAAAAAAAAAAAAAAAAAAAAAAAAAAHyIzHc9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAHy4vF6vGhsbVVZWptXVVa2vryscDiuVStl/3nder1fd3d0aGhpSW1ubSktLFY/H39k55DtuSUmJ7ty5o08++US1tbXnoq1ut1v19fX67LPP1NzcrP39fS0sLCgcDr+N6f9JcblcKikpUWlp6bueiiOntfQhRZtzxYWv4rl0ii2/D9fnbc3B6/WqublZg4ODqqqq0tLSktbX15VIJC48pnUNrXPI9T5z+ixz/3zSx888zkXWyPuyBgAAAAAAAAAAAAAAAAAAAAAAAAAAAK6K+11PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG9OsSFOwzAKjn4ahqGamhoNDQ0pFotpYWFBBwcHH0S02uJyudTW1qbBwUFVVlYqFAopHA7r9PT0vTsPwzDkcrnU1NSklpYWHR8fa2dnR9FoVKlUSoZhyDRNVVRUaHh4WI2NjUokEnrx4oV2d3eVTCbf9SlcypuMyhaz7q3tfT6furq6dP36dcXjcf3jP/7jex8Jd7vdKisrUygUUiwWk/TPkd+3Ee0t9jqnK3SeV3GMd+1NzSP9GrrdbtXU1GhgYECtra2KxWJ69OiRjo6Oruz4hYxjvbuu6jjW/c81Zvp3pmmeCV8TrwYAAAAAAAAAAAAAAAAAAAAAAAAAAB8bAtYAAAAAAAAAAAAAAAAAAAAAAAAAAAAfsWJjnMXEq8vLy3X//n21trbqD3/4g9bW1hSPx/Pu975EYk3TVG1tre7cuaNAIKD9/X2Fw2Ftbm7acd+3ybpX2a6PYRiqra3V3bt3JUkzMzPa29s7s01ZWZmuXbum27dvKxgMamtrSxMTE0okEhea01XEZd9X6de7mDXpcrkUCAR048YNPXjwQIFAQLFYTE+ePNHa2tql53SVMV1rf8MwVFpaqv7+ft29e1fffPONZmdnz2x7kXtdzDxLSkoUCAR0cnKiYDBYVFC9mPvzvrxf3jQraJ/vnevE7XarqalJDx8+1P379+XxePS73/1OS0tLVxa6z7wPpmk6fu/03itkPVnr1el+W/ubpinDMFRSUiKfz6dQKKRIJHJmn8znrdj3AQAAAAAAAAAAAAAAAAAAAAAAAAAAwPuOgDUAAAAAAAAAAAAAAAAAAAAAAAAAAG+IYRh+Sb+T5NNP/6bvf0ulUv9nwzC6Jf17SbWSnkj636dSqahhGD5J/09J9yXtSvpvU6nUwjuZPJCH2+1Wb2+v7t27p52dHc3OzioYDJ7bzgqJut1ulZaWyufzKRKJ6OTk5MJR5atSUVGhmzdvqrm5WaenpwqHwwoGg3aI+22Em52OkS3KWl5erlu3bqmxsVHT09Pa2Niw47Uul0slJSXq7u7WJ598Irfbra2tLf3www/a39+/UJD1Y464XvTeer1eNTc36+7du2poaND4+Liqq6tVX1//TqLnhfL5fOru7tYXX3yhVCqlcDjsuM7cbrdKSkqUSCR0enqacw0Usz7cbrc6Ozv1ySefaHFxURMTE9rf3y84lnyZ8H0h+15m/HclPU5e6NwNw5DH41FjY6M+++wzffHFFzJNU0+fPtWjR4/OxLAvGpZ2Omb6fuk/W/ffaf6Zn2ULzqd/nj62aZpyu91qbW3V3bt35fV6NTo6qsXFRYXD4TP7poerP8S1AAAAAAAAAAAAAAAAAAAAAAAAAAAAkAsBawAAAAAAAAAAAAAAAAAAAAAAAAAA3pyIpD9PpVJBwzA8kr4xDOP/J+n/JOn/kkql/r1hGP8PSf9HSf/3P/53P5VK9RmG8d9J+p8k/bfvavL48F0kcJrJ5XLJNE2lUiklEgk78FldXa07d+6otLRUo6Oj2t7ePhM/tZimqYqKCvX29urmzZsqLS3V3NycXrx4oa2trUudXy75ztnv96u/v1+9vb12vDoej2t9fV17e3uS/jmIehnWHLKNky3Smjl/j8ejrq4utbW1aW1tTbOzszo+Pra39Xg8am5u1sjIiPr6+rS1taXx8XG9fv1ayWTyUmvgstfhsgHcN6HYa2EYhsrLy9Xb26sbN24okUjou+++k9vtVltbm16/fq2Dg4Oi52EFd5PJ5Lkwb+Z2F5m39FN0u7W1VQ8fPlRTU5P+8Ic/aHt7+9zaLC0t1f3799Xb26sXL15ocnJSp6enjmO6XC55PB4ZhqFIJJI3RJ1MJhWPx7WysqLNzU2Fw+EL3YNiZcaTpcJiyR+CZDJZcADc4na71djYqC+++EJfffWVfD6ffvzxR/32t7/V7u6uEomEpOzvz4ves8z90mPThR4n/T3ktBZcLpf9LElSSUmJ+vv7NTIyIq/Xq5cvX+rw8NB+HzrNM9fxAQAAAAAAAAAAAAAAAAAAAAAAAAAAPlQErAEAAAAAAAAAAAAAAAAAAAAAAAAAeENSPxUQg3/80fPHPylJfy7pf/fHz/9XSf+DfgpY/1d//Lsk/W+S/q+GYRgpSoq4hIsuH7fbrZqaGnV0dKiyslJLS0taXl5WNBqVx+PRwMCA+vr6NDs7q5cvX+r4+PhMgNcwDLlcLtXX1+vWrVvq6+tTOBzWxsaGysvL1dTUpIODA0Wj0as8XVu+EHBra6tu3rwpl8uleDwur9erra0traysKBwOn9nWMAw74u0UGU4/5/Qg62Ue3fR9TdNUa2urbt26pXA4rOnpaW1tbdmxWZfLpcbGRn366ae6d++eTk9P9ezZM718+VKRSORC0dmriHc7jfs+KTQKbRiG6uvrNTw8rP7+fm1sbOjHH39UJBLRl19+qVQqpZcvXzoG3LPFuz0ej1paWlRXV6eDgwOtrKycuVdO1+oi68nlcqm2tlbDw8O6fv265ufnNTk5ee65M01Tg4OD+vzzz7W2tqadnR3FYjHHMcvKytTd3a2BgQGdnp7qxYsXWltbyxlTTiaTWl1d1fr6uiKRiBKJxFuJBGe+kz5WhUTiDcNQdXW17t27p5GREZmmqd///vf6zW9+o7W1Nft9kjle5hiZ36Ufr5DrnTnXzP1zHdM0TXk8HklSPB63w+/p+1ux+du3b+uTTz5RJBLRo0ePNDc3p2Aw6LhOs73TAQAAAAAAAAAAAAAAAAAAAAAAAAAAPgYErAEAAAAAAAAAAAAAAAAAAAAAAAAAeIMMw3BJeiKpT9L/TdKcpINUKmWVTlcktf7x762SliUplUrFDcM4lFQraeetThofjVzBVqcQqfRTILS0tFR9fX26fv26AoGAqqqqFAgEdHBwoIODAzU3N+vLL79UOBzW8+fPtb29rVgsdmY8r9erpqYmDQwMqLGxUXNzc5qbm1N9fb2++uor+Xw+ra+va2fnn5d3evj0TQZEy8rKdPfuXdXV1SmVSsnr9WphYUEzMzPa29uzI6gej0eBQEDNzc1qaGhQKpXS/Py8VlZWFI1Gz8WsXS6XfD6fEomEYrGYYyg1854UEk6tqqrSyMiIysrK9Pz5c62vr9sBYitKe+fOHQ0PDysWi+mbb77Ro0ePdHBwkDMqnI11/ld1D97ncHC+czRNU21tbXr48KHa29s1PT2t0dFRhcNhDQ8Pq6mpST/88IPW19dzjpV+DUzTVHd3tx48eCDDMPTo0SP7PuWKDxcy30wVFRW6deuW7t27p6OjI33zzTdaW1s7N05zc7O+/vprhUIhPXr0SJubm3aQO31bj8ej7u5u/fznP1dra6sODw8VjUYVDAZ1cHCQcy7hcPidhoEvG2V3uVzyer1KJpNZn2/rOJb3Ze0bhqGamho9ePBAP/vZzxSNRvXrX/9aT5480e7uruLxeEEhd4/HI5fLpWQyqUQicS4gbW2Xawzp/Dq2QtaZ19QwDLndbpWWlqqmpkYtLS1qamqSaZpaXFzU9PS0jo6OJP30XElSZWWlhoeHNTIyou3tbT169EiLi4s6PT2155yNaZrn3usAAAAAAAAAAAAAAAAAAAAAAAAAAAAfOgLWAAAAAAAAAAAAAAAAAAAAAAAAAAC8QalUKiHprmEYAUn/H0mDlx3TMIz/XtJ/f9lx8KfNKdDpcrlUXl6u3t5eDQ8P6/j4WL///e919+5dNTQ0yOv1qry8XH/2Z3+mrq4u/af/9J+0tLSkSCRyLnLb0dGhgYEBJRIJff/999ra2pJpmmptbVVbW5u2t7eVSCTsUHL6/m8qHmoYhlwulwYHB3Xz5k2VlpYqEolobGxML1++1NbWlmKxmFwul6qrqzU4OKi7d++qqalJ8XhcXq9XExMT+vu///sz4W3pp/BpV1eXBgcHNT09rZWVFYXDYcd5FHN+brdbd+/eVWdnp54+faq5uTkFg0GlUimZpqmysjLdunVLn3/+ueLxuH7729/q8ePHOjo6ynscl8sl0zQdo65XdQ9cLpeqqqqUSCQUCoUUi8XObWOapqqrqxUIBLS2tqbT09Oij+N2u1VSUqLKykr5/X5FIhEdHBzo5OTkXGTc5XI5ziOTYRhqa2vT119/rdbWVo2Ojurx48dKJBIaGhrSyMiIfvzxR01NTdlB8fT5lJeXq62tTaZpand3V7u7u4pEImpsbNQnn3yiQCCgp0+famVlxY5FXyWfz6euri49ePBAHo9H//AP/6CZmZlzx/L7/fr6669VV1env/u7v9P8/LwikYjjmFVVVerq6pLb7db4+Lhqa2vV3d2t8fHxvNFz67tigsdvQrFxdpfLpebmZg0MDKitrU0HBwcaHx/X8vLyufv+rmUGok3TlM/nU0tLiz777DPduXNHh4eH+t3vfqeXL1/q8PDwzPs31++F1tZW3bx5U1VVVQoGg3r9+rXm5uZ0cHCgRCJhHz/bu9z6Ll/g2trH4/GopqZG3d3d6unpUXV1tSQpFoupvLxc1dXVWllZ0fHxsb1PVVWVvv76az148EDz8/P67rvvtLy8rNPTUyWTyTPBbad55LoOAAAAAAAAAAAAAAAAAAAAAAAAAAAAHyoC1gAAAAAAAAAAAAAAAAAAAAAAAAAAvAWpVOrAMIxfS/pMUsAwDHcqlYpLapO0+sfNViW1S1oxDMMtqUrSrsNY/7Ok/1mSDMOgsogr4XK5VF9frxs3bqisrExjY2NaWFhQOBzW9evX1dnZKbfbrU8//VS/+MUvNDExoSdPntjxUCs86nK51NnZqS+++EIej0ffffedVldXFY/HVVZWpkAgoPr6etXW1srn88ntdhcUE84mM5Cai2EYampq0l/91V/p2rVrWl1d1ePHj/XkyRPt7OwoHo/L4/Govb1dIyMjam9v1+rqqp49e6b9/X0NDQ2ppaVFhmGci7GWlpZqZGREpaWlevnyZdZzKiaMagWUh4eHNTMzo/HxcR0cHCiZTMo0TVVVVenevXv6sz/7M7lcLv3jP/6jZmZmVF1drcbGRu3t7Wltbe1cINw0TTsKm0wm9fLlSzsofpVcLpfu3r2rBw8eaHx8XKOjo+eui9vtVldXl/7mb/5GXq9X/+7f/btzAWu3263q6modHByc2d8wDPn9fjU2Nqq3t1c9PT3q6OhQSUmJNjY29Pz5c/3+97+3Q+KVlZX2PfqHf/iHvPHh9vZ2/eIXv1BLS4uePXum0dFRmaapoaEhff3115qamtKTJ08UDAbP7FdWVqaRkRHdunVLzc3NOjg40O7urn73u99pd3dXn376qTo7O/XixQtNTk4qFApdeTA3/TkMBAL63e9+p6dPn567tqZpanh4WH/5l3+pX/7yl5qbmzt3XdKf7ba2NjU0NGh2dlZjY2O6ceOGBgcH5fV6c87nfQkCFzsPv9+vO3fuaGRkRJFIRNFoVB0dHTo+Ptbm5ua5a+VyueTxeBSLxS4VJS/mvZZtG5/Pp4aGBt27d08jIyNqbGzU5OSkfvWrX2lpaUnxeFzl5eUyDEMnJyfn5muapgKBgLq6utTc3KyGhgY7Xl1XVyefz6e9vT0dHh7mnLfTNXeabzKZlPTPweyBgQHdvHlTPp9P6+vrmp+f1+7uT/+TaGRkxA7Vu1wuJZNJVVVV6a/+6q/0xRdf6NmzZ/rNb36jjY0NhcNhe+zMOTkFt9+XtQoAAAAAAAAAAAAAAAAAAAAAAAAAAHBVCFgDAAAAAAAAAAAAAAAAAAAAAAAAAPCGGIZRLyn2x3h1iaS/lPQ/Sfq1pP9a0r+X9H+Q9B/+uMv/948/f/fH73+VoqSIS0gPLVs/O/F4PGpsbNTdu3dVXV2t58+fa3FxUdFoVGVlZfL7/YpGoxoYGNC//Jf/UqZp6vHjx3ZQ2Brf4/GopaVFDx8+VEVFhUZHR7WwsGBHRq0Yqmma6uzs1N/+7d9qdHRU4+PjdmS4GMU8Hm63W4FAQF999ZX6+vo0MzOjX/3qV5qcnNTR0ZGSyaRKS0vV19enTz75RGVlZXr06JFevnypk5MTeTweVVdXq6am5lys1zRN1dfXq6WlRX6/X62trQoGgzo6OjpzfQph3SPDMFRbW6svv/xSe3t7ev78uQ4ODmQYhqqqqtTa2qrh4WHduXNHsVhMjx49UiqV0pdffqnGxkYZhqGVlRX98pe/VCQSsefg9/s1ODiov/7rv5bb7VYymdTh4aEODw/PxY0vw+fz6f79+/qbv/kb7e3taXd398w9NgxDXq/XjkQPDg7qxx9/PLcODMNQRUWF7t+/r6mpKa2srCgej8vlcqmxsVF37txRZ2enJOnw8FA//vijXC6X6urq1NnZqadPnyoajaqiokI///nP9cUXX2h2dvbc9U6/R1ao+c///M9VU1OjH374QRMTE6qoqNDw8LCuXbumiYkJ/eY3vzkTcPd6vers7NTw8LCqq6u1ubmpp0+fyjRN3blzRx0dHbp+/bpu376t169f6/nz5zo8PLTjurkUsk36OTU2Nmp4eFj19fX67W9/q2+//VbBYPDMebrdbvX09Ojf/Jt/o83NTT1+/FgnJyeO69U0TVVXV6u9vV3JZFIzMzM6OjrSwcGBwuGwTNO0t80VX84MBmdjmqb8fr88Ho9CodCZcHn6+8zr9crtdisajSqRSOQdO30+hmGcu67p+5eXl2tkZERDQ0NaWVnR5OSkysvLdefOHblcLrlcLhmGIdM0VVpaqpaWFl27dk1+v1/ffvutVldXHa+Fz+eTJEUikbzXIds55DpPt9ut+vp63b17V7dv31ZXV5c8Ho8mJib0+PFjGYZhr43y8nKFQiH9/ve/18rKij1+WVmZBgYGdOPGDcXjcS0tLWlhYUHBYFCGYWhoaEiBQMB+F6Zf18y5pb/TXC6XTNOUYRjn7pdpmnK73Wpubtb9+/fV09Oj3d1dPX78WCsrK/b7qbGxUW63W1tbWwqHw3bg/i//8i/1s5/9TD/88IN++9vfamtrS5FIRIlE4ty80p/7YmPhAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxoC1gAAAAAAAAAAAAAAAAAAAAAAAAAAvDnNkv5XwzBckkxJ/+9UKvUfDcOYkPTvDcP4HyWNSvpf/rj9/yLp/2UYxqykPUn/3buYND4uuUKnhmHI7XarsbFRt2/fVl1dnaamprS4uKjT01N5PB7V1dWpsbFRpaWl+vrrr1VdXa3x8XHNzMwoGo3a41vjjIyMqKamRq9evdLU1JROT09lmqYqKirU1dWlQCCgP/zhD1pdXZWkM2NcVK7oqGEYKi0tVVdXl27fvq07d+7oxYsX+v3vf6/Z2Vk76ltRUaGBgQENDQ1Jkv7whz9odnZWJycnSiaTMk1TkUhEwWDwzNipVEolJSVqaGjQ4eGhYrGY+vv75fV6NT8/r52dHYVCoaIDxIFAQHfv3lVFRYW+/fZb7e/vq6ysTC0tLerq6lJbW5va29uVSqW0vb1tB7b39vZ0dHSk3t5eud1uuVwue0y/36+BgQGNjIxoeXlZktTc3GzPzSnmfBE+n0/Xr1/Xz372M8XjcTtAG4/H7W08Ho+ampp0//599fX1aX19Xd9///2ZbSylpaUKBAIKBAJaW1tTSUmJuru7NTw8LL/fr/n5eS0uLurg4ECJREK1tbW6ceOGysrKJMkO3La3tysSiejZs2dnjpMZr25tbdUXX3yh8vJyO+be2dmp27dvq6KiQi9evNDTp0+1v7+vVCol0zRVVVWle/fu6c6dO1pdXdWvf/1r7ezsKBaLqbu7Wx6PRzdv3lRjY6M2Nzf14sUL7e7u2tc933Na6D2xAufXr19Xc3OzJicn9fjxYx0eHp6LV7e1telf/at/pcrKSv3d3/2ddnZ27NivNZalrKxMg4ODam5u1sbGhnZ2duTz+eTz+bS9va2Tk5OC5mZdY7fbrUQiceZ4brdb5eXlampqUnd3t9ra2hQKhfTrX/9aa2trkn6KHHu9XpWXl6ulpUXd3d0qKSnRysqKpqam7DWQ7XpZ98v6e7Z5VlZW6s6dO+rv79fk5KRevnypUCik7u5uhcNhnZ6e2u+N9vZ2DQ0Nqa+vTxUVFXr9+rVjnNrtdqulpUV9fX1aW1vT3NzcmTB3rmuWeQ5OrHU4MDCgW7duqaysTIZhKBQK6ejoSNvb22publZnZ6ei0ahisZhSqZTKy8vldrtlmqZcLpfq6+s1MjKijo4Ora2taXJyUpubm3YMur6+Xn6/XycnJwqFQjIM48y7Iz1Ybc2rpKRE9fX1am1tVSAQUDQa1fz8vJaWlpRIJGQYhkpKStTV1aXh4WHV1tZqYWFBk5OTWltbs8P2FRUVdsB6dXVVpmmqublZf/EXf6G7d+/qyZMn9rNnRc3T55JMJnPGtjOD1gAAAAAAAAAAAAAAAAAAAAAAAAAAAB8DAtYAAAAAAAAAAAAAAAAAAAAAAAAAALwhqVTqhaR7Dp+/lvTA4fOwpP/mLUwNkGEYdqz01q1bam5u1tLSkmZnZ3V6empHXG/evKnu7m4lEgmFw2Gtrq5qfHxcBwcHZ6LMlZWVun79upqamrS6uqqpqSkdHh5KksrLy9Xf36+bN29qZ2dHv/vd77S5ualUKqXT01NFo9ELn0O+760Y9O3btzU0NKT19XU7Xm1FdysrK3Xt2jUNDg4qEono5cuXmpubs+PVVujb5/MpFAoplUrJ5XIpmUzK5XKpublZ1dXVGhsbs6/L6empgsGgIpFI0UFUn8+nnp4etbe3a3FxUeFwWN3d3WpsbFRFRYX8fr/Ky8tVWlqqWCym4+Njra2taW1tTaZpqr+/X7FYTDMzM3ao2ePxqLu7W7du3dL29rbW19fV19enzc1N7e3tnQkJX4bX61V/f7++/vprlZaW6unTp3r16tWZwLHb7VZdXZ2Gh4f14MEDxeNx/fDDD1peXj53rUzTVHV1tTwej+LxuPx+v3p6enTv3j0lk0m9ePFCCwsLOj4+VjKZlM/nk9frlc/n0/HxsWKxmFwulyorK1VZWalQKKSDgwN5vd4zgVvrWPX19bp//75qamrscW/evKm2tjadnp7q22+/1czMjB2vdrvdamho0Keffqru7m7Nzc3p6dOn2tzcVCwWU2Vlpdrb29Xd3S2/36+VlRW9ePFCa2trduw3X9y8mPVTVlama9euqbu7W9vb23r8+LF2d3eVTCbPxOZbWlr0i1/8QgMDA3r69KnGx8fPxcOt7V0ulxobG9Xd3S1J2t7eVnl5uTo7O1VTU6ONjQ0lEgn7HqVSqXPnZD2rbrdb9fX1dmz94ODAfg+1t7ertbVVtbW1amhoUGlpqZ49e6ZwOCy3262qqio1NTWppqZGgUBADQ0N8ng8kn56x6RSKY2Pj+v4+DjnNcsVKbYC4A8ePNCNGzc0MzOj8fFx7e3tye/3y+126+joSKenp2poaFBnZ6c6OjpUXl6uSCSi09NTPX/+XEdHR/Z41jppbW3VgwcP5PV6tbS0ZMe0y8rKVF5ermg0ar8zcr3b0ueevp3L5ZLf71c8Htfi4qIqKyvtd0EoFFI8Htfu7q729vaUSqXU1NSk2tpabWxs6Pj4WKWlpWpra9Mnn3yiqqoqTUxMaGpqSvv7+3Zou6amRrdv31ZPT49ev35trxnrPNPj1V6vV5WVlWptbVVvb6/a2trs5zORSCiZTGpra0vhcFglJSUaGBjQ/fv35ff7NT09rVevXmlnZ8d+h/r9fjU2NqqtrU3BYFDBYFD9/f366quv1N/fr7GxMf3ud7+z49WZ6zk9tO20DtIj1wAAAAAAAAAAAAAAAAAAAAAAAAAAAB8TAtYAAAAAAAAAAAAAAAAAAAAAAAAAAAAfocxYZ+Z30k/h5t7eXrW2tmp/f18zMzMKBoOSJL/fr87OTt24cUMul0uzs7Nyu91KJBJaWlpSJBKxx/P5fOru7lZXV5cODw81Ozur3d1dGYah6upqXbt2TcPDw/J6vfrhhx+0uLio09NTOyBabODZ6Xwyx7DO3zAM+Xw+VVZWand3V48fP9b8/Lwdoi4pKVFPT4/6+/sVj8c1PT195nvppzBsIBBQa2urfD6f2tvbVVdXp+PjYxmGoe7uboXDYS0uLurw8NCOBSeTyTPh4HznYB2rvb1d169fl8/nU3V1tUZGRnR6eqrd3V2tr6+rq6tLNTU1isVimp6e1osXL7SysqJIJKL6+nq5XC69fv1aCwsLisfjMgxDLS0tunnzpmKxmF6/fq3GxkaVlpbq1atXOjg4sGOvl70XTU1N+uyzz9TZ2amJiQlNTk6eiZ0bhqGKigoNDg7q7t27Mk3TDiiHw+Fz16S+vl7Xrl1TKBRSMBhUT0+PhoeHFYvFNDExofn5eQWDQTsmbgVzy8vLtbOzI5/Pp5KSEnV2dsrn8ymRSGhoaEipVErLy8v2OrSC7UNDQ+ro6FAkElEgEFBTU5Mk6fXr15qbm9PGxoYdNreixF9++aUaGho0MTGh58+fa3d3V5FIRC6XS21tbbpx44aampq0s7OjqakpLSws6OTkRIlE4tLXO53P51NXV5euX78uwzD06tUrra+v25FuwzBkmqZqa2v12Wef6eHDh9rc3NSPP/5o36PMwK8klZaWqqOjQ4FAQMfHx6qurtb169fV0dGhVCqlhoYGNTU1aWNjQ4uLi9rc3DzzfkgXCATU19cnr9cr0zTV0NCgxsZG1dTU2OH3g4MDVVRUaGNjQ2NjY/J4PLpz5456enqUSqXsAPvy8rKi0agCgYD6+/tVUVEhr9ebN2yf65qXlZXp1q1bunPnjn2/Dg4OlEqlVFdXp+bmZnm9XjU2Nqqzs1Ner1fb29va2dlRXV2dtra2NDs7awefpZ+e6ZqaGl2/fl21tbV2AN3j8aixsVE3b95URUWFXr9+renp6azXzuL0vpOkRCJx5lnu7e1VIBDQwcGBZmZmND8/r93dXcXjcdXU1Mjj8WhjY0PT09NKpVLq7e3V/fv35fV69fz5c7169UpHR0f2+qmsrNTw8LB+9rOfKRqNan9/X+Fw+Mw73DAMeTwe1dXVaXBwUN3d3fL5fAoGg1pcXLQD9MFgUNvb20qlUiorK9ONGzc0PDwsSXr58qVmZma0t7enWCymVCplj9nV1SWfz6eNjQ319/dreHhYzc3Nmpqa0jfffKP19XXFYjHHCHUhv2+u4vcRAAAAAAAAAAAAAAAAAAAAAAAAAADA+4aANQAAAAAAAAAAAAAAAAAAAAAAAAAAwEfIirhmi536fD61tbWpq6tL0WhUc3Nz2t3dlSSVl5eru7tbn376qWpqavTixQtNTU3pzp072tra0u7urh27dblcamxs1PXr1yX9FPpdXV1VIpFQQ0ODhoaGdPPmTfn9fo2Ojmp2dlbhcPhMYDRbgLrQkKjTdunx6tbWVhmGoefPn2tmZsYOEFsB3Z6eHnk8Hs3MzGhpaUmnp6f2GG63WzU1NRoaGtKtW7eUSqVUWVmpZDKpSCSiWCymvb09zc/P6/DwUNFo1DGemo8VF66urrZjvZFIRNFoVBsbG1pdXdXR0ZHa29vV1NSk09NTzczMaHx8XOvr64pGo6qoqFBjY6MikYhev36to6MjGYah8vJy3b17V4FAQGNjY/L7/ert7dXOzs65mHj6fLJd21zn0NDQoPb2dm1ubmpsbExbW1t2zNe6H52dnbp3754qKir0/PlzPX78WDs7O+eOX1VVpZGREdXX12tsbEyBQEAjIyMyTVMTExNaWFjQ8fGxHaAuLy9XX1+fbt++rZqaGpWXl9tR7JqaGj158kRHR0c6Pj7W8fHxmbCzy+VSX1+f7t69q4aGBoVCIR0eHmptbU2vX7/WysqK9vf37aCu2+1WU1OTfvazn6m5uVkvX77Us2fPtLu7q0QiIdM0VV9fr/v376u7u1vJZFKvXr3S9PS0Pc5F1kkuVsi5pKREs7Ozmp+ftwPDkmSapgKBgD755BN9+umn8vl8evbsmRYXF88El9NZ+3R0dKihoUE1NTVqb2+X3+9XLBazr39jY6M6OjpUX1+vb7/9Vpubm+fWjt/v18DAgP3Oqaurk9vt1unpqdbW1rS3tyefz6fe3l6trq5qZmZGiURCn3/+uVpaWrS/v69Xr15pbW1NJycnisfjMk1TlZWVMk1TwWDQvj9OnOLcmefa1tamoaEhhUIhvXjxwl6/Xq9X7e3t6uzslN/v1/HxsR2rDoVCamhoUDKZ1OzsrA4PD8+MX1paqsHBQd28eVNbW1taXl6WYRjq7e3V9evXNTg4qKOjI83Pz9vv1XzPnVOkO5lMKhaLyefz6dq1a2ppadHm5qbGx8f1+vVr7e3tKZVKKRAIKBAI6OTkROvr6zo4OFBPT4/u3bsn0zT17Nkzzc7O6vj42F6jFRUVun37tr744gv5/X6NjY1pYWFBoVDIfncZhiG/36/Ozk6NjIyot7dXe3t7mpqa0urqqiRpcHBQKysrdlzd5XLZIepkMqnJyUn7Glpr0u1222uwrq5OktTV1aWenh7V1NRobGxM33zzjVZXV+33bzKZPPNOK+RZs94jAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxsC1gAAAAAAAAAAAAAAAAAAAAAAAAAAAH+CKioq1N3drfLyck1PT2t1dVWxWEwlJSXq7+/Xp59+qo6ODk1PT+vHH39UPB5XSUmJdnd37cCzaZryeDzq6elRbW2t5ubmtLy8rFAoJLfbrYaGBvX29qqsrEwTExMaHx/XwcGBHRO14qJWbLrYiLVTZDk9QGoYhlpaWtTT06PV1VVNTU3p8PDQDgyXlpaqp6dHgUBAq6urWlpaUjAYtAPFJSUlamlp0a1btzQwMKBoNKr5+XltbW2ptLRUw8PDOjk50eTkpB26LSb4nHmepmnq2rVram9v19bWlpaWlrS6uqqdnR2FQiG1tLTo5s2bcrvdGh8f1/j4uLa3txWLxeT3+9Xc3KzGxkYtLCxoa2vLPs+GhgYNDg5qfn5eqVRKt2/fVjwe16tXr+zgstN1LeQepHO5XKqrq1MsFtPz5881Pz9vx7Gln0K0ra2tun//vpqbm/Xq1Sv9+OOPWltbOxO5NgxDpaWlun//vq5du6bJyUlFIhF98skn8vv9Gh8f1+LiooLBoBKJhNxut6qrq3Xz5k2NjIyooaFB4XBYzc3NGhoaUiwW0+rqql68eGGHq6PRqOLxuAzDUFlZmWpra/XZZ5/p+vXrOjw81ObmpmZmZuz7bUXXU6mUXC6X6uvr9emnn6q1tVUvX77U6Oio9vb2lEgk7Pj2559/rt7eXiWTSe3s7Gh2dtYeK5FIXGitZON2u9XV1aWamhqtrq7q1atXOjw8tIPIpmmqrq5Ow8PDunv3rurq6jQ5Oanx8XE7Qp35HJmmKb/fr/7+fvX19am8vFybm5va2NjQzs6O9vf37Rh8ZWWl7t27p6amJnm93jPrxgqE9/b26s6dOyotLVU4HNbh4aHW19e1srKinZ0dGYahzs5OxeNxzczM6OjoSDdu3FBTU5NWVlY0NTWljY0NhUIhJRIJeTwetbW1aWBgQMFgUOvr62eC3ZnS55PJMAzV1NTo9u3b8ng8Gh0d1cLCgj1eZWWlent71dnZqb29PW1sbNgx8urqavn9fm1ubmpzc/PM8+TxeNTV1aWHDx/K4/FoaWlJhmHo+vXramhokN/vl9vt1uHhoQ4ODs48B8Wuj/RYfW9vrzY3N/XixQvNzc3ZUe3q6mo1NTXJ5/NpfX1d+/v7qq+v17179+Tz+TQ6OqqZmZkzgffS0lJdv35dP//5z1VdXa0nT57o+fPn2traUjwet9dfZWWl+vv79cknn6i1tVXLy8saHR3V8vKyJKm5uVmhUEgzMzNaWVlRNBpVb2+vRkZGJEkTExN2ONvj8aisrEx+v191dXVqbW1VY2Oj/VllZaWampo0PT2t7777TouLizo9PbWf0XzXKde6uMrnEgAAAAAAAAAAAAAAAAAAAAAAAAAA4H1AwBoAAAAAAAAAAAAAAAAAAAAAAAAAAOAj5BRptZimqcbGRjU3NysYDGphYUHBYFCSVFZWpo6ODtXX19tx0I2NDTU0NKi0tNSOrKaHhru6uhSLxbS2tqbDw0OZpqnKykrV1NQoFotpYmJCo6Ojdmw5M5YrXU00NDO8XFFRofv378vtduvVq1dnAsOGYai6ulqdnZ2KRqNaWlqyvy8rK1NLS4u6u7vV19enkpISra6uanp6WktLSwqFQurs7NQXX3yhly9fanFxUaFQyA5zFxufTaVSMgxDtbW1GhgY0PLysqanp7W1taXj42Mlk0nV1NTo/v37qq6u1sTEhF68eKHt7W3F43G5XC77XGKxmDY2NuzIuMvlUmdnpxoaGjQzM6Pbt2+rtLRUP/zwg5aWluwwc7aoazEqKirU19entbU1vXr1SkdHR/bYLpdLjY2NevjwoW7cuKGNjQ19//33WlpaUiQSsa+bYRjy+Xy6c+eORkZGtLCwoNevX2t4eFgtLS32vOPxuDwejx0ZHxoa0uDgoNxutyYnJxUOh/Xw4UN1d3fr5cuXmp6e1u7urqLRqH2frDnfuHFD3d3dunv3rnZ2dvTkyRO9fPlSGxsbdiTbWrOmaaq6utqOa798+VJPnjzR7u6uUqmUvF6v6uvrNTIyojt37mhxcdEOAW9ubp5ZJ1eprq5O165dUzwe1/z8vL02DMOQ2+2259Tf369kMqloNKpHjx5pfX3djhBbrPtQUVGhgYEBff755yovL9fMzIzGxsa0tramg4MDe+2Ypqmmpibdu3dPkUhEoVDo3HpqaWnRV199pZ6eHq2vr2tjY0Pz8/NaWVnR0dGRHXpubm62A9GdnZ3q7u7WxMSEnj9/rp2dHcViMbndbpWVlam7u1v37t2zn+9CI/JO3/v9fg0NDampqUkzMzOanp62w94ej0d9fX3q7e1VMBjU+Pi4xsbGtLOzo9LSUrW0tKiqqkpTU1MKhUKSfnrurHfpX/zFX6i/v1/j4+P2e9EwDB0cHCgejysSiWhzc1P7+/sFzT8br9erW7du6d69e9rd3dWTJ080Pz9vx6grKirU2dmp5uZmLS8va39/XyUlJRoaGlJVVZUePXqk6elpBYNBew5er1cDAwP6q7/6K7W3t+vHH3/UDz/8oNXVVYXDYUmSz+dTU1OTbt++rVu3bsnv92tyclKjo6NaWVmR2+1Wf3+/ysvLNT8/r7W1NcXjcbW0tOjTTz+V3+/X6Oiofc0lKRAI2NHquro61dTUqLS0VIlEQsFgUD6fT1tbW/r+++81Pz+v09NTJRIJO2Cdfg2zXU/rPX0V7z4AAAAAAAAAAAAAAAAAAAAAAAAAAID3GQFrAAAAAAAAAAAAAAAAAAAAAAAAAACAj1hmjNMwDJWUlKizs1Mej0erq6va2dlRKpVSWVmZ6urq5PP5NDExoadPn2p9ff3cmFYUV/opAFxbW6vV1VXt7u5Kkh1Trqio0MLCgubm5rS+vq5oNFpwvLqQiGiubXw+nwYGBtTd3a0ff/xRGxsbisVi9vemaaqurk6VlZWanZ2149o+n09tbW16+PChOjo6FAqFNDY2pomJCW1ubioej8vr9aqxsVEnJyd69uyZ9vf37cjxRVix4Js3byoajerJkydaX1+3Q8elpaUaHBxUe3u75ufnNTY2Zsd6reBzc3OzmpqaNDo6qsPDQ3tcn8+nnp4eNTY2qru7W5L05MkTzc7OXmlM2e12q7OzU/X19fqnf/on7ezs2AFlj8ejpqYmDQ8P6/79+zIMQ+Pj43r9+rVOT0/tiKzL5VJFRYWuXbumhw8fand3V0+fPlVFRYWGhoY0NTWlyclJRaNR1dbW2qHxa9euqbGxUUdHR3r27Jnm5+fV3t4un8+nnZ0dPXv2TGtra2fi6Va01jRNlZeXq7e3V+FwWL/97W81Ojpqh9rT76l1n65fv64bN25oeXlZjx8/1s7OjiSptrZWN27csO/V3NycfvjhB5WWlqqurk5ut1umadrHTg/nXiaa6/F4NDAwoIaGBr18+VJra2uKRqP2d/X19bp//776+/u1tbWlsrIy7e7uamZmxg6dp7Mi3YODg7p79646Ojo0PT2tb7/9VouLi2diwaZpqqSkRE1NTaqurtbLly91dHR05nzKy8v18OFD3b59W+vr65qcnNTU1JS2t7d1enoqt9uttrY23bhxQ/F4XIuLi4rH42ptbVVVVZV2d3ftALP17LW3t6ujo8N+Xubn58+tZ2sO2a6z9bnH41Fvb68ePnyopaUljY2NaX9/X8lkUh6PR52dnRoeHraP9ezZM+3u7iqZTCoQCKi9vV2GYej09FRer1eVlZWqra1VR0eHent71d7eLq/Xa899b29Pr1+/1sHBgT777DPFYrEzsfqLcLvd6uvr089+9jOFw2E9fvz4zDNuGIZqa2vV1dWlVCqlra0tJZNJtba2qru7W69evdLk5KQd7bbWel9fn/7Fv/gXun79up48eaJvv/1WKysrOj09lWEYCgQC6uvr0+3bt9Xd3a1IJKLR0VGNjo7az0VbW5sGBgY0OTlph68DgYBGRkbU3Nys77//XrOzszo4OFAikZDL5bL/GwgE1NDQIL/fr+PjY62vr2t3d1eDg4NaW1vT9PS0fY6pVOrc/S80Zm15E3F5AAAAAAAAAAAAAAAAAAAAAAAAAACAd42ANQAAAAAAAAAAAAAAAAAAAAAAAAAAwEfKMIxzwU6Xy6WamhrV19crFAppc3NTyWRSVVVVam5uVmNjozY3N/X69Wutr68rlUrJ5XIpFAppZWVFgUBAFRUVdsS2qqpKPp9PoVBIPp9P7e3tam5uVlVVlfb39zU3N2fHli8T6S2Gx+NRQ0OD7t+/r4ODA7169coO9aZSKZmmKa/Xq+rqaklSMBhUMplUdXW1mpqadP36ddXV1WltbU2jo6OanZ21t5Fkx7ufPn2q1dVVxePxS8Wr/X6/uru71dzcrOfPn2t1dVWJROLMuVy/fl3b29t6/vy5tre3FY/HJf0UG66oqFBzc7O8Xq/29vaUTCbl9Xrl9/vV0tKirq4uBQIB+f1+/eEPf9DY2JiCwaAdIU53kfOwYrcDAwPa2dnR/Py8wuGwpJ/i2y0tLRoaGlJXV5eSyaQ2Nze1tramcDh87n4MDg5qcHBQwWBQv/3tb3V0dKQHDx4olUppdHRUe3t7crvd8vv9unXrlq5fvy6fz6eFhQU7ZOzxeOT3+7Wzs6Nvv/1WMzMzikQijud3cnKihYUF3b9/X3Nzc5qcnLSDydb21hz9fr86Ojo0NDSk4+NjffPNN9ra2rLj77du3dJf//Vfy+v1anR01J7/2tqaampq1NjYqJWVFYVCoUtd73RWiP3atWs6PDzUwsKCgsGgHS+vr6/XjRs37Pj5wsKCvvzyS83Pz2tnZ8eOG1vrwOPxqLa2Vrdu3VJ3d7dqa2u1v7+viYkJO1xsxdqt+9bQ0KD29nZtbW3ZgXErDl1aWqqbN2/q008/1dHRkX788Uc9f/5ce3t7isfjMk3TDn/X1NTo6dOn2t7eVlVVlWKxmEzT1NDQkNra2mQYhiorK9XV1aWmpibNzc3p22+/1dTU1JkQt9N7LxuPx6P29nZ98cUXcrvdevHihba3t5VMJuVyuVRfX6+HDx/acxsdHdXu7q7i8bg8Ho9KS0tVUVEhj8eja9euSZICgYBqa2vt9+SjR4/U0NCg3d1dra6uamFhQQcHB6qurlZDQ4MODg60u7uraDR6ofXg8XjU3NysL774Qn6/X7/61a/06tUrnZycSPppjfl8PlVXV6uiokJbW1s6OTmxA/DxeFwvX77U8fGx/T6qra3VwMCAPv/8c928eVOTk5P61a9+peXlZcXjcZWVlammpka3bt3SnTt3VFtbq+XlZY2OjmpqasqOcVdWVqq3t1f19fV69OiRUqmUvF6vOjo6NDg4qLm5OY2Pj+v4+NheVy6XSx6PRx6PR263W6enp9re3tbs7KyWl5dVXl6uvr4+ra2t6eDgwH7/WmvYuob5YtTpgXPr72/rdxQAAAAAAAAAAAAAAAAAAAAAAAAAAMDbRMAaAAAAAAAAAAAAAAAAAAAAAAAAAADgI2QFZNPjnIZhyOPxqKamRh6PR0dHR5KklpYWNTY2KhAI6OjoSHNzc9rb21MikZBhGEokEjo8PNTjx49VXl4un8+n09NTGYahkpISSVJzc7P8fr98Pp8kaWVlRTMzM9rZ2TkXeC4mMFsMK35aUVGhW7duqa2tTd98841OTk5kmqYdJZYkn88nv98vt9utmpoaXbt2TVVVVWpsbJTb7db4+Limp6e1vr6uWCxm72sYhqLRqJ4/f65IJKKTk5Os55J5zk7cbrfq6+vV3d2ttbU1zc/PnzmW2+1WdXW1wuGwxsfHtba2ZseYre+rqqoUCATkcrlUWlqqxsZGVVRUqKGhQX19faqurlYwGNT8/Lwd87Zisdnm68TpvhmGIZfLpYaGBjU1NWl6elqHh4cyDEOBQEBdXV0aGBhQeXm5lpeXtb+/b8eqa2pqFI/H5ff7VVdXp87OTrW1tWl3d1c//vijtra21NnZqfb2dk1PT2ttbU2S7GhwWVmZ9vf3tbi4aF+beDyu6upq7e/v65tvvtGzZ89yhoETiYROT0/teK/1x+kca2tr1dvbK5/Pp2+++Uarq6tKpVKqqKhQV1eXbt68qXg8ru+//14//PCDDg4O5HK5NDExoXg8fibSa13vyz4HPp9PnZ2dKi0t1fj4uDY3NyVJ5eXlamxstOPB09PTmpycVF1dndxutzY2Ns5EuqV/jtvfvXtX/f39CofDduTeCm8nk0mlUin7mlRXV6u7u1umaeq7777T7u6uTNNUKpVSSUmJ+vr69OWXXyqVSumbb77R8+fPtb+/bwfY/X6/2tvb1dTUpP39fa2srEiS4vG4VldX1dLSomvXrqm0tFQ+n0+JRELl5eWKRqN68uSJZmdn7RB6+rkUwu1226H7xsZG/f73v9fCwoIdPi4rK9O1a9fU2tqqiYmJM+Ft6xqEQiHt7Oyoq6tLw8PD9vU5ODjQixcvtLi4qHA4LL/fr1AopJOTE8Xjcfl8PrW0tMjr9WpmZsYOPhfLMAxVV1fr/v37amho0Pfff6+JiQmdnJzY72/pp9C59FPU2QpXl5SUqKamRsfHx4pGowoEAiorK1Nra6uuX7+umzdvqqOjQ9vb2/rNb36j1dVV+/eHFaDu7+9XKpXSixcv9PjxY62srJy5H1aMOh6Pq6GhQcFgUPF4XP39/YpEInr69KkdoXa73SorK1NdXZ36+vrU1tYmSXr16pXm5ua0tbWlRCJhr9+DgwMlEgn7mqf/KeS6Ea0GAAAAAAAAAAAAAAAAAAAAAAAAAAB/KghYAwAAAAAAAAAAAAAAAAAAAAAAAAAAfGSsaGlmQNkwDJmmKa/XK+mnyG1fX5/8fr+8Xq/W1tY0MzOj3d3dMzFVwzAUDAY1NTUlt9uteDxuh0St+G9bW5vq6+u1vr6uyclJvX792g6MFhMWLeTcco3j8XjU2tqqgYEBGYYhr9er+vp6HR4eKhQK2THjVCqlcDgs0zR1/fp19fT0KBaLaXNzU9PT01paWlIwGDwXHJakcDistbW1SwdQTdNURUWF2traFI/HNTExoVAodOY8U6mUdnZ29OOPP2ptbU2hUMgOD1tRWuv41dXV+vTTTxWJRFReXq7S0lIlk0m9evVK9fX1qqysVHNzs1KplI6OjhQOh89FjHPJto3X61VbW5sdljUMQ/X19bp27Zp6e3sVi8Xs+G9nZ6du3bqle/fuqb6+XqenpyovL1dNTY1SqZRevXqlsbEx7e/vy+PxqK2tTR6PR2tra3acu7OzU83NzQqFQhobG9P8/LwODw8Vi8UkSXt7e/Z1CgaDZ+adfs+sa2wF2tvb29XZ2alYLKbj42N7nScSCZWVlamtrU0NDQ1aXV3VwsKCPB6PKisr1dbWpsHBQUWjUf3H//gfNTU1pZOTE0k/hZgXFxe1urqqWCymaDR6Luh+UYZhqKKiQo2NjTo8PLSPUV1drfb2dnV1dcnlcmlqakozMzOKxWKqq6tTOBxWaWmpqqqqdHBwYF83r9errq4u3blzR8lkUslkUvF4XHNzc9rZ2bFDwRa3263S0lK5XC7Nzc3p9evXSiaTMgxDHo9HnZ2d+uqrr1RdXa1vvvlGT548OROvln4KcAcCAXm9Xnsd1dXVye/32+F1Ky6+u7urra0t1dbWyjRNLS8v2zF3p/XpFI23PjMMQ+Xl5bp27Zra29v14sULjY6O2vFl0zRVVlamsrIyTU9Pa3R0VNvb24rFYvZzGY1GtbGxocePH2tra0t+v1/Hx8fa3t7W/v6+Tk5O7O0l2dfUNE2Vl5ertbVVoVBIq6urOj09vdAacLvdam9vV1tbm30OwWDwTNRZkmKxmHZ3d7W/v6+2tjY9ePBAqVTKjkTfv39fLpdLTU1Nam1tld/vVywW08bGhra2tpRMJtXc3KzKykp1dnbq2rVrqqmp0ebmpp48eaKXL19qZ2fnzPvVes9MTk7az4Pb7VZJSYlqa2u1v7+vWCymsrIyeTweBQIB1dXVqbGxUaWlpdrY2ND8/LzW19cVCoUUj8dlmqb29vY0NjamcDhsX1Pr/lt/zwzRW1H19OuS/o51WisAAAAAAAAAAAAAAAAAAAAAAAAAAAAfCwLWAAAAAAAAAAAAAAAAAAAAAAAAAAAAH5lcMc54PK5gMKhwOKyWlhYFAgFtbW1pZmbGDgFnxk/TQ7/px0gmk1peXtYf/vAHVVdX2zHWvb09RSKRM2HR9P9eRq4x3G63amtr1dPTo0gkorm5OZWXl6ujo0MrKyv2OcTjcYXDYa2urioQCKi+vl4HBwd6/fq1lpaW7BiydQ3Szzv9elz2fDwejx2FnZ+f1/b29rlweCQS0dLS0rljWn+PxWLa2dnR3NycHXiORqPa29vT1NSUlpeX5Xa7devWLbW3t2twcFCSlEgkFIvFzkWJL8Lr9aq5uVnST0Hinp4e9ff3q66uThsbG5qYmND6+rodkLXCwbdu3VIoFNLBwYEWFxc1NzenjY0NnZ6eKh6Py+v1qqysTIZh2GHjmpoaGYahxcVFTU9Pa2trS5FIRIlEwo4nJxIJRSKRM8Fa65o5CQaDWlpaUktLi+7du6fa2lptbW3p4OBABwcHOjo6UiAQUEtLi3w+n/b29lRWVqaOjg51dnaqpqZGOzs7+v7777W+vq5oNHom3J5+7KsKuUs/rY9AIKDKykoFg0FJUlNTk7q7u9Xa2qqTkxNNTk5qcXFR4XBYLpdLBwcH2tnZUV1dnW7evKnp6Wnt7u4qGo3K5XKpsrJSPp9PPp9Pbrfbjl8fHx+fC/3GYjH7OoXDYYXDYXteVVVVdqT8hx9+0A8//KD9/f1zQXgrMh6LxdTT06P29nYlEgm53W653W57LT9//lzz8/Pyer36+c9/rpOTE8dQcyHXzApUl5eXq6qqSnNzc/r+++91eHhobyNJJycnGh0dVTQa1eHhoR3eTg9Sh0IhLS8va21tzX4nWueYvvas41p/b2hoUG1trTY2NrS7u6t4PH5mm0JZYebx8XFNTk6eu8bp92pzc1MTExNKpVLq7u5WXV2d6urqVF5erq6uLnu71dVVPX36VDs7OxoYGFB7e7sePHigeDwul8sln8+nZDKp58+f2wH5o6MjxePxM/fDuj6zs7NaXFy0x29ra1MymVR1dbWGh4d1enoqv98vn8+nRCKh7e1tjY+Pa3t7WycnJ3bw3Vov1jNpvcudnu/0a+33+1VRUSFJOj4+tsPX6dsTsAYAAAAAAAAAAAAAAAAAAAAAAAAAAB8zAtYAAAAAAAAAAAAAAAAAAAAAAAAAAAAfmWwxzlQqpXg8ruXlZUWjUQUCAUWjUe3s7NgB0szwaWbIOv2zVCqlg4MDHR8f2yHV9HCvU1A08+/FyhYdtYK0AwMDqq6u1tOnT7W0tCRJikajCoVCikajdrg0EolocXFRm5ubMk1T8XjcDg8XEj0uRK4oqmEY8nq9qqqq0s7OjpaWluxQdvoxrc9M0zx3Hax57u7u6smTJ3r16pW8Xq8d6A6Hw0okEjIMQ1tbWwoEAkomkzo4OFAoFHIM3V70PD0ej8rLy/XgwQP5fD5FIhE9e/ZMr1690uHhoRKJhEzT1Nramg4PD/XixQt5PB6Fw2E7qG4FcK1zjsfj2t3dVTKZ1K1bt3R4eKjZ2VlNTExodXVVx8fH587BKfKd7RytIHMoFNL4+LhisZgd3vb7/fJ6vYpEIgoGg/J4PCotLbVjvx0dHaqvr1coFNLY2JgmJyd1fHysZDJp/0m/T9Z1uqp4tTW2x+OR3++Xx+PRrVu3VF5eLo/Ho5WVFU1OTmp7e1vRaNTefnd3V8+fP9eNGzdUX1+vnZ0dO9geiUQ0PT2tWCym0tJS7ezsaHV1Vfv7+4rFYueusRUQzmQYhkpKSiRJ3377rZ49e5Y1rBwMBjU9Pa1gMKiWlhY7NByJRLS/v6/NzU17vaZSKQ0NDcnr9Wp8fFzBYLDo65kenz44ONCjR48UCoV0dHR0bq0cHx/bYfBs7wPr3qY/u1ZI3eldahiGfD6f2tvb5XK5tLq6aseYL7I2YrGYpqamlEwmFYvFHN/V1n9PT0+1uLiow8NDzc3Nqb6+XjU1NaqurlZJSYlCoZBWV1e1sLCg7e1tGYahk5MTnZycyO/36+DgQCsrK4pEIopGozo4OLCf3cz3vvVuSiaTikajdtxckra2tjQzM6M7d+6ou7tbx8fH2tzc1KtXr7S+vq6joyOdnp6eGzPzObeOYRjGufO1GIah+vp6DQ0NKZFIaHp6Wmtra3bgPj3Knv6sAgAAAAAAAAAAAAAAAAAAAAAAAAAAfEyMq/xHzgAAAAAAAAAAAAAAAAAAAAAAAAAA4O0yDIN/KIhzXC6XYzzZCn1af1wulx2eTg+PSjoXDE0fL/PvVqw1/U/6Z+ku+29bneZkRWH7+vr0xRdfaHZ2Vk+fPrUDt+lB6sz90uOn1vjpEdNcAe/L8vl8qqmp0fHxsU5OTs5ct/Q5pv83nTV30zRzxrKtoK71d+t6XFWk2+fz6f79+3r48KFcLpdmZmY0Pj6ura0tnZ6enjkf6acYt/XHCu86zcPlcqmqqkqNjY3yer06ODjQwcHBmdh15n11ilnnOz/rGrrdbvn9frlcLkmyo87JZFLV1dW6e/euRkZGVFJSoq2tLc3Ozmp6elp7e3sKhUL2nBOJhB00Tp+L038vq6GhQV9//bUGBgZkmqbm5+c1NjampaUlBYPBM/Hs9HMtLS2VaZo6OTmxA9eGYcjtdsvj8cg0TTtQnS9Knz629ZnP51NlZaXC4bBOT0/PRb2t/5qmKZfLJbfbbb+PLNY+ViS7pKREf/u3f6vu7m798pe/1OzsrGKx2Ll1UKzM5z/bd9kiyfm+y9yuvb1d//pf/2ttb2/ru+++0/r6uuLxeNHvlcz1nusdkP6ucLlc8ng89jW3/mutd+vZcrvd8vl88vv9SqVSisVi9vWWZMfmM98p6RHvbHOprKxUVVWV3G63wuGwQqGQHa1Ol+v963StnD5rbGzUwMCA4vG4FhYWtLOzc+6dY13L9FA7nKVSqewLDQAAAAAAAAAAAAAAAAAAAAAAAAAAvJcIWAMAAAAAAAAAAAAAAAAAAAAAAAAA8AEjYA0nbrc7ZzzUKdwsZQ8zZ35mRWbTg8vZtr3qYK8Tl8uluro6/eVf/qX8fr/+83/+z9rZ2TkTts0MqmaLV7/Nc3GK3joFczOvcfr8M/fJ/C59//S4bKFx50KYpim/369AIKBYLKZQKGRHnNNj4JnhcOvcM8Pn1ufW362gdPp1yAzdWpzuX7YocXq81ukapnO5XCorK1NNTY1cLpeOjo4UDAbt+HP6tcwMNeea40WlX5vq6mpVV1crmUza80oPfGeLoVth6nTWs21dc+t8MkPw6fciM2Kf/ln6dulrwboOme+j9D+ZaycQCOjf/tt/q83NTf3yl7/U/v5+3mudebzM65dLtm1yPa/55uHxePTVV1/pyy+/1H/5L/9F4+PjOjk5Keo8ch0r13vfurdWPD49ap8+Xuazl+33ROYfayynZz593/Q5pG+b63lMn1P6toX8vnK73fJ6vXYMPf39lz7P9Fg6siNgDQAAAAAAAAAAAAAAAAAAAAAAAADAh8f9ricAAAAAAAAAAAAAAAAAAAAAAAAAAACAty8z9OsUo3aKoTpFnrNFbd90vNoKnZaWlqqvr0/Nzc361a9+pe3t7TOxXWsOmXHkzOhutvMsJHZ7EYXEV7OFap3OLf38rDBsZqz5KsPV6SKRiDY3Nx2j3JlzzgwZp5+DNef0exOPx+2Qbr41lS06bo2bTbbx0mPPwWBQp6enMgzjXOg28/pmC/detUQiod3dXe3u7tqR4vT76zSfbNHw9OueHlR2Wi/Zxsz8Ods7JHO9pn9nyYxDNzQ0qK2tTd9//72Oj4/PbXuV17iQeLX1c7Y1n34vrPMNBAJ68OCBtra29Pr1a4VCoQu9J/Ot/2zXXfrncHn6M2bFrTPPJf1ZtbaJx+NZ71mh52A915mcQujW9k6/W5x+tuZp7ZNMJhUOh8+dT3pM+0294wEAAAAAAAAAAAAAAAAAAAAAAAAAAN4HBKwBAAAAAAAAAAAAAAAAAAAAAAAAAAA+QtnisdZ3mXIFTy/z+ZuOV/v9frW3t2tgYEBTU1Oanp52DCQXEuPO9vmbOod8Co0vp2+bGXMtNFx92QBwrnufK2qdfnxrG6dobSKRUDKZLGqdpo9byHfZ4uHp84nH42eCz9n2y3bsq1pL2cLJiUQiawTYirqnx6PTzzMzXJ1vvpnHyAxaZ84z3+fWZ1b42Zqv2+1WeXm5+vr6FA6Htbq6Kumn8HAikTh3Hlch2/sz11q2vnO5XPL5fHK73To+Pra/Ky0t1a1bt1RWVqZ/+qd/0tHR0Zn5X0SuwL11TzLPw+n5yryPTusg25rI9tzkintnvqOd1mS2sZ3kOqds806Pdr+rdzwAAAAAAAAAAAAAAAAAAAAAAAAAAMDbQMAaAAAAAAAAAAAAAAAAAAAAAAAAAADgI5IZhc0MgTp9lu1np7Ez47jZts8VeL2qWKjL5VJdXZ26u7t1fHys0dFRhcPhM8dLpVIyTfNcMNWKITtFdPNxCvJm/j1fcLpQuUK6TiHZ9HPKFeLOF6Etdo7pc8oWNU6fc+Zac7qm6THjzO+y7Z/tvAoNgGd+lh6xttaQFb5Nj4IXE4u/KpnrrZB5ZN6PbMHzzG2t7wq9b+k/p8+rkDXgFC2uqalRS0uLZmdntbW1JUnnQtf55AqWZz432ebh9Hn6eD6fT4FAQGVlZfY8rbk2Njbqxo0bmp+f19LSkmKxWN6IutM55Io65wrJZ/5srWNrjHzrQdKZsHW2+LXTe6eQd2P6OnEKXDuNlbmf05yzSX++C333AwAAAAAAAAAAAAAAAAAAAAAAAAAAfIgIWAMAAAAAAAAAAAAAAAAAAAAAAAAAAHxEig2ipm+TuW+uoGyuoGiu+Uhnw6nS+VhpIQzDUFVVlbq7u1VRUaGpqSltb287jpUeuHWKVucLcGeLxmY7b6cQ7GVkC/06RVudItZO/30TnMKyuaLK1jbZrld6VDf9vmbe48z1VGhIPNf9y9wmfdtEIpHzPHKFjq9qXWQbx2ndOl2PXBHmfGPmClsXMkb6Z07PYvq2LpdLZWVlGhgYUG1trb777judnp7az/RlrmWx9yLfNfP5fGpsbFR1dbW2t7d1cnJib1NeXq7r16/L7Xbr6dOnOjo6OjOHy55LtvdTtth1tndwtvtr/Tfbms48j3zrzGlO2bbP9/7N9T60/l5IYJ6ANQAAAAAAAAAAAAAAAAAAAAAAAAAA+FgRsAYAAAAAAAAAAAAAAAAAAAAAAAAAAPgTkB78zBaszvwuM4qc/n22MbONmy49lnrRcykpKVFbW5taWlq0ubmppaUlOyycGavODJg6xU9zxUsLCR1n/nzZsG62eaSfT7ZIrVMQNzMCfZH5FBI9zramMq+5aZpn5pgehc6MQKevF6fIca5gcrZIsdM8cwXbc42VPmen56GYZ6MY2Z7p9PucL2ifLbid+exke2dku85WIDnzWc92fbLNweVyqaGhQf39/dre3tbs7KwSiYS9Li4bHXaKH+dbB07cbrdqamrU3t6uUCikw8PDM9/19vZqcHBQs7OzWl5ets+h2Pk7PeuFzjHbfpnR6sxYfK4oe/rnueaW612Zb/ts69Jp/1zvxVwuGxAHAAAAAAAAAAAAAAAAAAAAAAAAAAB4nxGwBgAAAAAAAAAAAAAAAAAAAAAAAAAA+BNQSJwzX8Q5Mzp60SCyNZ7TmPlYUdv6+nq1t7fr9PRUr1+/VjAYdJxPrnNyilpnBq/fdtQ0XxQ7MyTsFHTNFXe+yHlddNtsEdrMWGy2KLXTWNnuT3q0tpCQeK7odbpCo+ROsXenfa5qPRUaE88V3c41ViER9YvML9sx0iPJ1nNsmqbKy8s1NDSkiooKPXr0SNvb23a4+iqfzXxB+8zIc+Y2JSUlamlpkc/n08LCgsLhsH0O1dXVGhkZUTgc1uTkpE5OThzX91XFuAv53um9kjkHp/N1emdmO5dc88l37rnmk+3eZ/udUsjvGALWAAAAAAAAAAAAAAAAAAAAAAAAAADgY2a+6wkAAAAAAAAAAAAAAAAAAAAAAAAAAADg6hQahM63XXqQN/2zYgKvxbD2zzeOYRiqrKxUV1eXAoGA5ufntbOzo0QikfUcsn2eLVqaORenIGr65+kR14tEUJ2OZ5qmTNPMGiFOJpNKJBJKJpNn/uS7R29TsdfE6Xqmf55r/ta5Z451GcWM8bavbaHyXf/0GLRTQDzXM5Lvs0KD5F6vVzU1Naqrq5PP57PXvd/vV3d3t+7du6elpSW9fv1asVjsncSGnY5pnYNpmqqoqFBdXZ0ODg50fHxsf15aWqovv/xSbW1tGh0d1fr6umKxmB3pvso1W+jzbl3fzPtbSJS80O0zn9lcaynfcbP9Tij0PQ4AAAAAAAAAAAAAAAAAAAAAAAAAAPCnzv2uJwAAAAAAAAAAAAAAAAAAAAAAAAAAAIC3I1dg1inSbP23mFhsrmBotoBtIeNb23s8HnV0dKizs1M7OztaWFhQJBLJOnbmcXPNLVeU2zAMOzqbbXun8yxUrkBrLhcJwmbb9k3HXjOD1Ol/LySGa11z6z6Ypum43buSvj7eN+nXvpBrfdljpI+X7Xhut1vV1dWqra1VPB7X3t6eHag2TVOVlZX65JNP5PV69fjxYx0eHp57Bq9asc+ONVefzye3263d3V2dnJwolUrJ6/Xqzp07evjwob777jtNTk7q9PT0zBrOPGb6tbvI+eXax/ou/dimaZ65b5nzcrlcZ/bNnGtmpLyY+WRKf86zReut74qNy7/t4DkAAAAAAAAAAAAAAAAAAAAAAAAAAMD7hIA1AAAAAAAAAAAAAAAAAAAAAAAAAADAR+QqIr5OYxQapc3GaftskdJs3G63amtr1dbWpkQiobm5OZ2enp4LB2cLdTuFk4tRTBC7WOlzTA/JXvR+5grNZvvsTbJiv9nOJ3M+6T9nRnXzrU9ru1zj55tDsdc9X8j3Tctcm9me12yRYWvdZTv/XPcu35yclJaWqqOjQ7W1tTo8PNT29raCwaCSyaRM01RVVZXu3LmjgYEBPX78WGtra4rH4/Y6eldB4szjmqYpt9stt9stwzDk8/nsePW1a9f053/+51paWtIPP/yg4+NjJRKJc2M6rc2rOr9c96CQALUl/Rm0xkwmkznXSza5fhdkHs/pd4QV1s4MgVvn86auJQAAAAAAAAAAAAAAAAAAAAAAAAAAwIeKgDUAAAAAAAAAAAAAAAAAAAAAAAAAAMBHJDP0Wcz2Tj+nKyYcW0w0tNB5lpSUqKWlRR6PRwsLC1pfX7cjqukh1WyB1Hwh34sqNGzttN1Vh7SdItBOx7toqLlYxYSyrW0LWcOZYdtcx0jfttDxMrcv9LnK3CdfSPyq5bufueaQL2Zs3RunmHG+sdPvU0VFhXp7e1VTU6OdnR2tr6/bcWfrOe/s7NSNGze0ubmpJ0+eKBwOnxnbNE3HGPTbYL1LrL97vV6VlpaqpKREJSUl8vv9amtr0+eff66TkxP9+te/1u7urj3f9Ah3tujyVc2z0M8z34v5nqvMORcawnZaIxeZZ/oavIw38fsAAAAAAAAAAAAAAAAAAAAAAAAAAADgfUPAGgAAAAAAAAAAAAAAAAAAAAAAAAAA4CORL16bGSd1ilc7xY4z472FRI+vItacGcc1DEPBYFCvX7/W1taWTk9Pz4VHswVYC41kFxJidRo7PWpbSMg62zbJZLKosXIpNBR7GcUGqrMpNICbbb9sa9faJtexs31X6JwKDfm+yUhuoef4pteE0zslnc/nU0tLixobG7Wzs6O1tbUz8Wq/36/W1lbdvHlTbrdbjx8/1vr6uh1/Tj+P9OB5oeHlQuZeSAw9/Wev16uKigqVl5erpqZG/f39unv3rtxut7799lstLi4qHo87jlfo+/QynCLqueLQmdtm/j1TtrEKfTfk+73kxHpP5pp/oYhXAwAAAAAAAAAAAAAAAAAAAAAAAACAjx0BawAAAAAAAAAAAAAAAAAAAAAAAAAAgI9EtnisU6AzPRqabbv00Gmxkc/MgHDmeIXIPP7p6alWV1clSdFoVIlEQslksqh5XVUw9k1ET4uNOGfem8x7+TYCyvnGzBcwdwrRZnIK4RZybsXEyHONdZH5vSuFzj0zDu+0b679L8IwDFVUVKihoUHxeFw7OzsKBoN2nNrj8aixsVG3bt1SXV2dXr16pampKYXD4TPPuVOw+k0oNGxu/VxWVqahoSE7Vj02NqZXr14pEomc2dZ6TtPfi2+b03OZ7ZnKvA7WvXB6/7zpQHoxigmSF/t7BAAAAAAAAAAAAAAAAAAAAAAAAAAA4ENivusJAAAAAAAAAAAAAAAAAAAAAAAAAAAA4GqkB4xzbZNv28z4dLYIcbYxcs0hWyTXaaz0uaZSKcViMZ2cnOjk5ESxWMwxlpo+TrZzzRY0LSR0muu7XNcqffzMMKxTbNpp3k7fZf7JHP+iAdk3FZ4t5D4UOo9s162QsdMjwrnGST9Otj/p471vss2z2Lk6PfeFjJH5PJSXl6umpkbRaNQOUxuGIbfbrfr6et24cUOtra1aWVnR2NiYDg4OCrpHmed7EZn75jpu+meRSER7e3s6Pj5WeXm5UqmUXr58qampKZ2cnBT9fBf7jOQaq1CGYcg0zXPHz5yD09+dQtGZ77Z8IXun+RS7Vp3mnf7OdZqHaZrv5XMLAAAAAAAAAAAAAAAAAAAAAAAAAABwldzvegIAAAAAAAAAAAAAAAAAAAAAAAAAAAC4GoXEqzOjo5Zsn+fjFJHO9VlmlNppjrmOkUqlcgZT03/OFsXODPo6nYfTuLmun5N88Vmn61TM/oWMV0iUO9+5XzQInGt+Tush23amaeYNTGeOkf5zsfO/7H3IvO5XfR2zyXV9s80vM2ydL9Z8GYZhqKysTJWVlXaY2jAMuVwu1dbW6saNG+rp6dHe3p4mJia0tbWleDxub5dKpZRMJq90TsXOP/2/1jwikYg2Nzc1NjamtbU17e/va2VlRUdHR0okEkomk/a8C5F5b4qZW7H7pe+TuWYLfUde5LjFzLfY924xLhM8BwAAAAAAAAAAAAAAAAAAAAAAAAAA+FAQsAYAAAAAAAAAAAAAAAAAAAAAAAAAAPiIFBqFTv/OKXybbdv0bYqJVxcSBX7Tod98wehixil030JjyMXMJVtk2CnY7bRfZog313iF3It85+gUTC5G5j7Zxsh1bQuJ5OYap9C1mS/A/i5ZMXAnuQLihcaD821nfR8IBLS/vy+PxyOXy6Wqqirdvn1bg4ODOj4+tkPQ0Wi0qPBzIbJF7wtd606R50QioePjY83NzWlpaUmRSETxeNyOV2dbvxdZS8XMr9B1l28+hcTjs3FaV+m/Ewo5x2xh7WzHKXSs9Hfc+/KMAgAAAAAAAAAAAAAAAAAAAAAAAAAAvAkErAEAAAAAAAAAAAAAAAAAAAAAAAAAAD4yuWK7hQaVs+2TGRAtNGqb+XPmHJ0ix9nip9mOU8y5FRokznWuxUZPCwnBZgsJX3UYuZBgb7EBXKdj5Du+0znmiqoXc8651kxmQPcyUdxsx30fZYu4Z4uYO/1c7FpM3z4YDMo0TTU3N2ttbU1lZWXq7e3V4OCgwuGwxsbGtLi4qHA4bK+P9HVymWt70RBz+jXK9pzG43GFQqFz7zGngPWb8CZD35fd/qIB74scp9D3mtM9BQAAAAAAAAAAAAAAAAAAAAAAAAAA+FgRsAYAAAAAAAAAAAAAAAAAAAAAAAAAAPhIpEc5MyOzhYQ9c41pyTZGIWPni8RmC50WOk4qlZJpmme2yRYmvmi0tJCo8UXDx+n7Z5ufaZp5g87ZIsWZcd1Cr0Gx1ytbhDvzu0z5IuVvQr7zuui5vGu5Qu9O2xT7bBZ7XOu7YDColZUVtbW16ebNm5KkmpoaHR0daWxsTHNzc3a82prXVceZ880zm3zPWiKROHdN08/jMu+dq5ItGG99V+x1KTRcnm//fGsx/fvM65ht33d9rQEAAAAAAAAAAAAAAAAAAAAAAAAAAN4XBKwBAAAAAAAAAAAAAAAAAAAAAAAAAAA+QtkCn/m2y/Zz5neFBFkLDbZa2xWyfb7Iaq5wdeY2xbrIfoVEmbNFwjOD01acO9dcckV2Cw0W55pbIbKN7RRVL2b/i7podD1XSNeKE7/PEet8io2SZ4sDG4aR95m0vo9EIhobG1MikVBLS4skaWlpSTMzM1pbW9Pp6amSyaQdrs4Wr871XKXfI6fPnc4nF2v+mcey5ub0niwkLP8+yXxvZr4ril3nxdyXix7jItfYKdoNAAAAAAAAAAAAAAAAAAAAAAAAAADwsTP4R5UAAAAAAAAAAAAAAAAAAAAAAAAAAHy4DMPgHwpC0k9BTrfbXfD22eK8ucLX6ZFRp9BpZsg123Gc5mAFYtODtYWEaPMpNOTtJF/kNt/Yhca7M7d/U1HkXHHdt+mqzy9bZP0iskW+s0XG078vZu2/75zOJ12xz6RhGDJNUy6XSz6fT5WVlSovL1c0GtXx8bHC4bDi8bgdrbbWqVPA+k1c10LWTq7QfK718T6vg4s8M9meEadtsj1DxV7rzO+c3mPFnEv6/HKF0nFeKpV6M7+gAAAAAAAAAAAAAAAAAAAAAAAAAADAG1P4/wsBAAAAAAAAAAAAAAAAAAAAAAAAAAAA3ltXFXUudJxcUdtcAd9CI8rZwthOY2WT+V16gLsQFwnPvq198JOrDgVnizZbayfbMTLn8aYi5G9a5nN3UZlR8VQqJdM0lUqlFA6HFY1Gtbu7a39nbf8un4Vig/XFBJkvcrz3Va6weeY2hSomIF7M7w6ndZgvRg8AAAAAAAAAAAAAAAAAAAAAAAAAAPCxIWANAAAAAAAAAAAAAAAAAAAAAAAAAADwEcgMqkqFhT4zw6H54tOFyNw3W1A039iFxq4/ZE7nlu36FRKOTd/WKSh+2WuZKzT7JoO8Vvz4ouMXO7erPI/3PVSc77l2iv5eJG6dfv+SyeS565JKpZRMJq518rAAAQAASURBVB3v85u+fsWOn+sZSP8+33V612vjTRy70Bh1vmuYua3TO62QfS1Okfn3+bkEAAAAAAAAAAAAAAAAAAAAAAAAAAC4KgSsAQAAAAAAAAAAAAAAAAAAAAAAAAAAPgKmaZ77LFug04p6On1fbJy40FBrPk4R7WL2eRfSr4lT5DfbtsXKtl8hofD0vxcafc21T65zSL8G2daVUzA917Gsz5LJpOO8Co3lXgWn613IvbmqdZoZdL/MeeW6V8U8f9nWnNN4VqA6c59s6yHfuO+jdxVJv2rWfSjmvZV+X52ec0u29VtIJD3XMZzGLeT3yvt8HwAAAAAAAAAAAAAAAAAAAAAAAAAAAK4CAWsAAAAAAAAAAAAAAAAAAAAAAAAAAICPwFWFpC+j0KBvodHhy57Tm7wW2WLeTlHgYuaR79pkiw5bn+ULTGf7vJB4bCFx82whb8MwiooTZxsv/fwLCdjmO0628yjEZcK32QK/xdy/fNH0Qsdx+r6Q+aRvW8y1sGLkTmsi3xrG23PZ92f6GsoWl851jEKf2WK2BwAAAAAAAAAAAAAAAAAAAAAAAAAA+FNEwBoAAAAAAAAAAAAAAAAAAAAAAAAAAOAjkC0EmhmiLSRKWmi81to2MzBcSKTYKTz6McZIc10bp5+t7TOj0LnGteQLX+cKUBei0FBxrjBtvvue/nkhxylU5nUtNjBebKT5Ioq9f1cRaM8c1zTNos/zMtHvXAHyD/kd8DGcQzGyrcVCg/WFjJ9t/RcbugYAAAAAAAAAAAAAAAAAAAAAAAAAAPhTQ8AaAAAAAAAAAAAAAAAAAAAAAAAAAADgI1RIoDdfMFeSksmkHVbOFlXODBZnC4teNCKa7VwKjRAXGyvOxboG+WLbhX6fL1Rd6JwLiUAXMk6+0LnTvXW6voZhKJlMnhvLaV75gtf5wt/5ZB4/2xxyKfR4hUZ1LzKe09orlNN1TP8u2xrMdaz02PVFItbp5/IxhJ4vGmJ/k3Ldcyn7HLOts8zP8j3bueaV7/tin6H0fS7zrAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxsCFgDAAAAAAAAAAAAAAAAAAAAAAAAAAB84KxIp2maks6HPfP97CSZTJ4JzeaKhTqNmy2Ymy+o6jRO5jGctk2lUvb5O42T7TOnsZwizIXM3bpO2e5DvrlYnznFZYsJzhYSiS40NltshDdb4LzY/XONWUzou5hot7V9MfftKqPF2Z6pQiPPhayRQp7ZzDWfPrd8z5RT4LiYyPVVRe/fhbcdrM73vFv/veg1zLxvTuNc5pwLeRdn2yfXe9v6LNv4me9rAAAAAAAAAAAAAAAAAAAAAAAAAACAj53BP6oEAAAAAAAAAAAAAAAAAAAAAAAAAODDZRgG/1AQMk1TLpfL/jkzNltMZLeQeHK+8QqJAGc7bqHzyyZfHDvf+Pnmkuu7XKHXYmW7D4VErfN97vTd+6qYtfQuzu8ia/1DcplA98dwbdLPIdf55Ip4X9Xxi3FV76KLPlOFvIMyx813LCuwni88XWjwXfrpd6c1XuY8rM/Sg+6QUqnUh1OVBwAAAAAAAAAAAAAAAAAAAAAAAAAAkiT3u54AAAAAAAAAAAAAAAAAAAAAAAAAAAAALs+Kb5qmeS56mkqlzsRBM6Os6dsUGkwtJAKdftx82xdyzIvGWDPPNdc5Xib4epXBXqdxCv2smDEvsu9VBnqLOe5VbnuV3vdQ81XO730/1zftIkH1i14v63180TGu4jm13uFXEa/OHDfbZ9l+D6W/v3ONcxGZvx+venwAAAAAAAAAAAAAAAAAAAAAAAAAAIB3yeAfTQIAAAAAAAAAAAAAAAAAAAAAAAAA8OEyDIN/KAi5XK6sgep0xQRNM6PXTt9n47RfZlA7fdtCAqmFzP0iY2SLpOYaMzPQetnI7GXitG/z3wpnnm/6XN7WPN5USPuy55AZheffcH8cMu9ltrByKpXK+nzk2jfXmE7+FNbVVUa7Cxkj2++FVCqlZDL5J3HNi5FKpa7uxQsAAAAAAAAAAAAAAAAAAAAAAAAAAN4K811PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFcrW3CzmJhn+n8vEgW1AqBOUdeLjnfVnMZMn7OUO3qdHt9+m5HTqww3X/Z4H0Os+WM4B1xOoc+U0/ss832Qb99CPi/mnZI5l7f9PrpKV/0+zbwfucLgTsf9UK8jAAAAAAAAAAAAAAAAAAAAAAAAAABAOve7ngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuxykOnR5VTaVSRQda03/Otm+28G8hEVCnMS8Sti5kPk7jFROBzrym1t+djnfZc3gTnGK7+bZL39Yp2vuhS1/XF7lHmWspc21cpY/x+hfqbcXFi4lL5/o8Xa71ddHz+hhj61exrjN/B14k/m352K4vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWsAAAAAAAAAAAAAAAAAAAAAAAAAAIAPXGaEM9/PhUoPGOeKZL8p+ebtFPYtNNZcyHEzI+DZjp/5WTHXp5g5GoaRd2yn8y8kgFzsdbtoMPay3reI8/s2n3ze9r267LHexFzf1Psr21pwug5O4Xun5/Qq49dv2lVeV6exCjnvXDF5a8z0baz39dv6nQYAAAAAAAAAAAAAAAAAAAAAAAAAAPAuELAGAAAAAAAAAAAAAAAAAAAAAAAAAAD4gF1VrNqSHlEtNpR6mbBqtmBp5jxSqVTOGGwh558eMk0fI1/gudiY6ttQzDxybZcrcl3Iub/tAOy7vv5OMdw3fayr8Kdyf3J5k1Hsi+6b+V7LNZ7Ts2qN8baC6pnP+0WO63Te2Y7j9HPmsdN/Rzgp9nMAAAAAAAAAAAAAAAAAAAAAAAAAAICPBQFrAAAAAAAAAAAAAAAAAAAAAAAAAACAD5gVeLZki3p6PB65XC4lEgklEom84dBCj11M+LjQsayf/X6/ampqVFFRoVgspqOjI52cnCgSiSiZTBYcJM2cW7YAbCFzzDXnbMe/CKcgdLa/59qnWPnOJ9t1elMR2DdxjQuN7RZyPbPdh2z7vM9h51yKnXex53gV16XYkP1FOYXvnd7B2X4uRCH7vO115PS+zPdOsrZ1eicX8lzluo9XcY+dfu+kHx8AAAAAAAAAAAAAAAAAAAAAAAAAAOBjQMAaAAAAAAAAAAAAAAAAAAAAAAAAAADgA5cvtul2u9XS0qKqqirt7u5qb29PkUjkzDaGYcg0TZmmKcMwlEgkFI/Hs45pmqZcLpd9/GQyqWQyeW5eF41Yl5SUqLu7W93d3QoEAjIMQ8FgUOvr61pZWdHOzo59DvniqNnisvmCt/niqenn6xTJts4/2/5Oc88n3/ZvI7x6FXHiQtaFYRgqKSmRaZoKh8N2eP0ynNaG9XMh0dzLehfR4Ysc87JB+mK9iXGLnW/6M5nr+Uz//iqC7ld17m864H1V6+iynJ5Zp2MWej2c3t3ZxgYAAAAAAAAAAAAAAAAAAAAAAAAAAPgQEbAGAAAAAAAAAAAAAAAAAAAAAAAAAAD4gOULhBqGIY/Ho/b2dvX09GhpaUlTU1Pa29tTIpGwt/H5fKqtrVVjY6NM09TS0pK2t7fPRKytaHVpaalqa2tVX18vt9utvb09bW5u6vj4WLFYrKDwZ7bgs3Wcuro6BQIBBYNBHR8fy+v1qqamRgMDA6qqqtLU1JTW19cVi8XyxqdzhaTTt3GaV+b3ubZxCuYWcuxcionwvqkIcPrYhYao80VmC5mry+VSd3e3JGlxcVEnJyfFTd6B0/3BhyvX/btoHL7Q5zV9/KtYR5eNPb/JwHimZDJpHzP9+FJh1/Gi9yaXYo9X6O8EAAAAAAAAAAAAAAAAAAAAAAAAAACADx0BawAAAAAAAAAAAAAAAAAAAAAAAAAAgA+YaZo5w6XpUdGGhgaVlpbq9PRU8XhcwWBQqVRKZWVl6uzs1NDQkDo6OrSzs6O9vT3t7OzY+7vdblVVVam1tVU9PT1qbm6W3++XaZra3d3V1NSUZmdndXBwoHg87hh8zhcEtc7D5/Oprq5OJycn2traUjAYlMfjUWNjowYGBtTU1KSTkxMdHh7q6OjoXCjZKUxaSEi6mIBsvihzrsj1RcdPH6OQa1nIWOnbW1Ha9P3zra1s3xcaus6lrKxMLS0t2t7ePhPM9Xg8Mk1TsVhMyWTyykKzTlH1y0aFC1Ho2nS6ptb+2fa5iDdxzqZpStKZNeZ0zMvcy0Ln/TZDz29S5nmkP7PWd8Wc50XugdPavar1U8g4pmnmXP/5AudOx7iKtQgAAAAAAAAAAAAAAAAAAAAAAAAAAPA+IWANAAAAAAAAAAAAAAAAAAAAAAAAAADwAUuPlko6E3M2DEOmaSqRSGh9fV37+/uqq6tTd3e3wuGwtra25PF41Nvbqzt37qirq0sul0sLCws6Pj5WMpm0g8Gtra26ffu2bty4oUAgoN3dXa2urkr6KTTc29uro6MjhUIhJRKJM3Mp5lwMw1B1dbVaWlr06tUrHR4eKhwOS5JCoZBM09TQ0JBqa2vl8XgKivheJvBb6DlkxlAL2e8igdSLxGELCfZa88/c7qL7OW1XDJfLpd7eXnm9Xm1ubioSiUj6KaTe0dEhr9er1dVVHR8fX2j8TMXeO6f9rJhuodekkGPlCxFnBozTfy7mPPx+v1wul8Lh8JnIdGYU3ul5y3euHo9HHR0d2t3d1dHRUdaIdSFj5ZIrYJ8+fqHHyRUNfx+lUim53W773bi3t6fT09OCztPr9aqyslJHR0eKRqP2ePn2Sz925meZ2zptcxWR6ELvZeYx3+d7CQAAAAAAAAAAAAAAAAAAAAAAAAAAcJUIWAMAAAAAAAAAAAAAAAAAAAAAAAAAAHzAMsPJmYFZKwq9t7ensbExtbS0yDAMNTU1qaqqSnV1dbp586Zqa2u1t7en5eVljY6O6vDw8Ey8+quvvlJPT48CgYAmJyf16NEjbWxsSJI6Ojp069YtlZWV5Q3u5uPxeNTc3Kzq6mrF43HF43E7pB2LxXR0dKRIJGL/bB3LKah72Xh1+lj59skX0s50kaCz2+1WIpGwA+GFumiQ2WnfzGtR7NiFbG8YhqqqqjQ8PKzp6Wnt7e3Z0WOv16v29naZpqmdnR0dHx/nvccXiZs7jZNrLK/Xq66uLq2vr+ecUzHyza/Y2Hg2JSUlun79upLJpCYmJhyfqVxyxaytIP3IyIi++eYbBYNBx4B1tuc13zUoNnh92W0vc18z39WX5XSt6urqNDIyonA4rKdPn+r09DTnGIZhyO12q66uTj09PXrx4oUdsM6330Xm6DROsc9gseNn+8zp2Ffx3AIAAAAAAAAAAAAAAAAAAAAAAAAAALxvCFgDAAAAAAAAAAAAAAAAAAAAAAAAAAB8oPIFldNDzqenpxofH9fc3JwCgYBaW1vV0dGhnp4elZWVaWJiQhMTE1peXtb29rYSiYT8fr+am5v1+eefq7+/X4uLi1pYWNA333yj9fV1+1j7+/sKh8OKxWJKJBJnIqBOkdVsTNNUdXW1mpubtbOzo6OjI8Xjcft7j8ejyspKeTwe7e7uKhKJZI1XZ1NsgLmQaHUh4xS6ndP8TdNUIBBQdXW1tre3CwokFzKfQsLcxcyz0OPl4/P51N/fr7q6Ov393/+9IpHImTHW19eVSqV0cnKSM05tmqYk5Qx+57uHmWvLaV+326329nb94he/0H/4D/9BR0dHeY9ljZ3r2md7dpzmWUis3el7v9+vgYEBff3111pbW9PU1JTjM1VomD7ze7/fr56eHtXU1CgSidgx+kLj0MWusXzPa6HPRbHPhNM1vkjk/SKs4/j9ft28eVPDw8N68uTJmXexaZoyTVOpVOrM82CapsrLy9Xd3a36+voz79uLPOPFyvX74bLB71zPrtOxre2IWAMAAAAAgP8/e38SI0l+4PeePzPzfYlwD/fY94jc9yxWsYqsIqkiu5vspqYbkGYgNQaNgfCgdx1gMJjBu81h5jCnN3N90AMkjAA99Qit15KarSGbTbKLVZVVmVVZuW8RGfse4eH77uZzKJrJw9MjMnKrXPj9AIUMDzc3+9vf/mbOS/ALAAAAAAAAAAAAAAAAAADwpiFgDQAAAAAAAAAAAAAAAAAAAAAAAAAA8JpywrL7cWKx0texzmq1qlqtpmq1Kr/fr9HRUWUyGX355Ze6ceOGtre3VavVZNu2PB6PEomE3n77bY2Pj+vSpUtaXl5WIBDQ5uamqtWqTNNUNBpVLBbTxsaG+/nDjNvRGlGORCKamppSJBLRlStXlM/nZdu2JMmyLPX09GhsbEyStLa25h5rv/21OyisvZ/9PvMsYdUn5fP5NDIyoqGhIZXLZeXz+T3j+SbH8rgo7+MCsO2fbx+7aZpKJpM6efKkHjx4oK2trT3blMtlzczMqNlsumujfX9PEg5+klhtp22duPj58+cVi8VUrVYPDDQ/a5C3NSYt7Z2/Tsc96H2v16uRkRF98MEHqtfrSqVSe/b7uPvFMAxZliWPxyPbtlWtVve87/F41N/fr9OnT2txcfHA4PiLZpqmPB6PDMOQbdtqNBp71k+7J71Wh3k2PG7tPwuv16uhoSEdP35cmUxGDx48ULFYlPT1uYdCIQUCAVWrVeVyOTWbTZmmqUAgoMHBQU1MTGhhYUHlcrnjmNvP8bA6rcn91lKnbZxxPu74+33+oG073SvOdT9obQAAAAAAAAAAAAAAAAAAAAAAAAAAALxuCFgDAAAAAAAAAAAAAAAAAAAAAAAAAAC8wRqNhqT/Fuc0TVPhcFiDg4Pyer26d++ebty4oZ2dHTUaDTfq6fP5NDo6qqGhIX3xxRe6cuWKLMuSZVmq1WqyLEvd3d0aHh6Wz+fT7OysUqmUG80+KCDaGod1tvX7/ZqYmNCpU6e0srLixrCd8Gw8HteRI0cUj8e1tramtbU199yc/bTuv/Xf9t8f9LvHha/3O58XxYkEVyoVra2tuVHa57Xv57kvwzDk8XjUbDZVr9cfmRfLsuT1emWapur1esfYeSAQ0MjIiLxer27cuKF6vb7nGM6+DzqH/a5/6/aHuWYHrWPnfH0+n8bGxjQ0NKSvvvpK6XT6wHltDx0/bQh8v/21j8/ZptM6j8ViOn36tCTpo48+UiqV2nNNnDHsF3N27stkMqlsNqvl5eU9n41EIjp9+rRCoZBmZmb2XLfn6XHr2OfzKRqNKhqNyu/3q1AoaHd3V8VicU8UvD1a/Cz3tbM2PB6PGo2GqtXqnueVs//ncQ8ahqGenh699dZb6u/v16VLl7S+vu7OtxOqjkQiKhQKKhQKsm1bXq9XyWRSk5OTqtfrmpmZea5z8Ly0z1P7s/6gYPhhwuLt+3oVzhkAAAAAAAAAAAAAAAAAAAAAAAAAAOB5ImANAAAAAAAAAAAAAAAAAAAAAAAAAADwmjpM/LR1G9M0FQqFNDU1pSNHjqhQKGhlZUWZTGZPvNowDPn9fvX09Cifz2t5eVnVatUNFIfDYXV3d+vo0aOKRCK6e/euNjc3ValUJD1Z9NQ0TXm9Xg0NDenChQsyDEMPHz5UrVaTz+eT3+9XMpnU0aNH1d/fr/X1dd2/f1/ZbHZPNNnv90uSyuVyxzByp/l60kBwp/0dJoDdHhN2It+tEW/TNGUYhhqNxiOh23K5rPn5eUlSvV5/JDJ70NifNJD7tAFXr9ereDyueDyuWq2mzc1NFYtF2bYty7Lk9/sVj8eVSCQkSevr69re3pZpmjJNU81mU5Zlqbe3V5OTk0qlUtrZ2ZHH43HXiGVZqlarKpVKj4RpnXHvN34nBO71eiV9PY+ta77T9q3/tt4bXq9XwWBQpmmqp6dHp06dUj6f17Vr1x65ds752bZ96Ov2tJwxWpalQCCgQCAg6ev1UyqV1Gg03Lny+/2anp5WX1+frl27pgcPHqhare47H63n7/wcCAQ0OTmpyclJPXjwQGtra7JtW6ZpyrIsjYyMaHR0VEtLS1pbW3suAesnXZ/BYFCDg4Oanp7WwMCAJCmVSml2dlYLCwuqVqsKBoMKBAIqFAoql8t7zrfT8Z171bmX29ei1+tVNBrV4OCg4vG4CoWC5ufnlU6n99z77Z8zTdM99mHXimEYCoVCOn36tM6ePavNzU3Nzc25z2JJajQaymazyufzajQa7j0Zi8U0PT2t7u5u3b59Wzs7O88tqu2MTfp6PTqB8Pb747Bax2VZljyer/9vEmq1mrvmnO1a/z3oXJznTmuk3fnci75XAQAAAAAAAAAAAAAAAAAAAAAAAAAAvkkErAEAAAAAAAAAAAAAAAAAAAAAAAAAAF5znWKorcFey7Lc/4aGhnTu3DnFYjFtbW2pXC7Lsiw3suuEPBuNhmq1mvsZj8ejQCCgrq4udXd3K5lMqlgs6quvvtLc3JwKhYIbAm0f235M01Q8HtfQ0JC+/e1v6+TJk5qbm1NfX5/8fr88Ho/6+/s1MjIiSZqZmdG9e/fc0KrH41EoFNLAwIBGR0dl27bu3bunjY2NR+LETxK+deavNVLr6DTPnWKnTljbiR0HAgFZlqV8Pq9sNivbtt05jUQi6u7ulsfj0fr6unZ2dtx9+nw+GYbRMbjsxJHbA8mdrsNhPcnnnPMPh8OanJzU22+/rdHRUaVSKX300Ud6+PChJKm3t1djY2MaHh52A+WNRkPBYFDJZFKxWEwej0cej0cnTpzQ6Oiobt26peHhYdm2rUgkouHhYUWjUd24cUP37t1TsViUZVkKBoPyer2q1+sqlUqq1Wp7rp9zDT0ej5LJpEZHRxUOh7W+vq75+XkVi8VHrqkTgDZNc0/UuV6vu/fD+fPnFQgE1NPTo0Qiod/85jdKpVLuHDoh456eHnV1dSmXyymVSqlSqbjvt0bM29dQe4D3sNfF7/ert7fXjVPX63UtLS1pbm5Ou7u7ajabMk1TfX19unjxojKZjB48ePBIFLxTyNhZa84cJRIJTU1NKRgMqlwuKxgMuus+kUjoe9/7nizL0p07d9zrZZqmG2nvNO+t2zxJrL2TQCCg6elpnThxQpJ0584dlctlDQ4OamBgQLu7u0qn0xoZGdGRI0c0Pz+v+/fvq1aryePxyO/3y7ZtVatVNzwdDoeVSCQUCASUz+e1s7Ojcrnsnovf79fExITOnDmjZDIpy7IUjUZ1+fJlXbp0SeVy2d13rVZTtVqVYRiKRCKKxWJqNpva3d1VPp/f99ydOXai1xMTE7pw4YIk6datW9rY2FC9Xt8Tc65Wq+7nLctSV1eXpqenNTExoaWlJS0tLT0Sl37SteeMx7Is93UwGFQikVAwGNTGxoZ2d3cfiX7vt692pmm6+0smk2o2m+4+nfNznoWtz/vWddv6HdfqWZ6ZAAAAAAAAAAAAAAAAAAAAAAAAAAAArzoC1gAAAAAAAAAAAAAAAAAAAAAAAAAAAK+p1gCupD3BzkgkopGREQ0ODioajcrr9crn8+no0aM6evSo6vW6wuGwDMPQV199pY2NDTfW22w2VS6Xtbi4qLNnz+pP//RPFQwGZVmWms2mCoWCrly5os8++0wLCwtuwLU16Nwep3XG1xoP9fv9evvtt/XTn/5UExMTqlQqSiQSOnLkiCSpUChoZWVF9+/f14MHD7S9ve0GgL1er5LJpE6fPq3p6Wk1Gg1Vq1VlMhml02mVSiX3OB6PR5ZldYxAt3MiqbFYTIFAQIVCQZlMRrVabc95+f1+NzqdzWZVKpXcAKzH41EsFtPAwIAGBweVTCYVCoVUKBR0+/Ztzc7OyjRNHTlyRMePH1cikZDP51O1WtVHH32kTCbjhm2np6fl9Xq1vLysdDqtRqPhhmKdkLhpmkqn00qlUqrVas9reR3IudbRaFQffvihzp49q6WlJX300Ueanp5WPB7X1NSUpqam1NfXp0KhoPX1dS0tLWl1dVXValVDQ0N66623ND4+7gZ8k8mk0um0ms2mBgcHVa1WVa/XNTExoUgkotnZWRmGIb/fr6GhIZ08eVIDAwPa2dnR7du3tby8rGazqWg0qu7ubnm9XuVyOfX29uqtt95SIBCQbds6deqUfv7zn2tubm5P/Nbv92t4eFgXLlxQIBDQ8vKyisWiqtWqlpaWVCwWJUldXV06ffq0jh8/rqWlJSUSCfX19bnx9EgkomPHjumdd97RxMSEbt26pd/85jdaWVmRbdsKBAIKhUIKBAKqVqtKpVIql8uPzHG71vusfR17vV5NTk7q/fffV39/vxYXF5VOp915LJVKbrB+cnJSPp9P169fVyqV6nhPtMfSY7GYent7FQwG5ff7NT09rQsXLmh9fV1TU1OanJxUo9GQaZoaGxvTmTNn9LOf/UwbGxsKBAIaHh5WLBbT9va21tfXVSqV3NhwMBhUf3+/JiYmFI1Gtba2prt37yqbzT7V+rQsS8PDwzp//rz6+/t1//59ra2tSZKGh4dlWZYajYZs21Y2m9XAwIC8Xq/W19eVy+U0Pj6u/v5+LSwsuM9Gr9er06dP6+zZs4rFYlpbW9OXX36pubk5lctlN0R9+vRpHTt2TF988YVs29af/umf6v79+7IsSx6PR0ePHnWD2cvLy4rFYjpx4oTGx8e1ubmpa9euaWFhQZVKZc86cCLf8XhcY2NjCgQCSqfT+s53vqN4PK6HDx9qbm7OjZF3CqSbpuneC+fPn1c+n9fm5qYajYa8Xq/7GZ/PJ7/f766b1ph2+1qxLMv9funq6nKfSaZpanR0VEeOHFG5XNbf/u3fuhH1g7R/rznjjsfjOn78uM6ePat4PC7LsrS4uKjf/va3WltbUyAQUDweV6FQUCqVUqPRUDAYVDQaVTQald/vd98rFAqPBLtbEbMGAAAAAAAAAAAAAAAAAAAAAAAAAABvEgLWAAAAAAAAAAAAAAAAAAAAAAAAAAAArzEntNke3BwfH9ef/MmfaHBwULVaTc1mU8FgUFNTUyqVSlpZWdH29rYymYwKhYK7jRNH9vv9SiaT6u/v18jIiHK5nD777DM9ePBAx48fVy6X0+7urhu9dsbg/Cd1DvA6vzdNU5ZlSZKCwaDu3bunpaUl7ezsyLZtnTt3TqlUSh9//LHm5+dVLBbdeLPH49HQ0JDef/99nT59Wnfv3tWVK1d08uRJ+Xw+N7bqhKSnp6cVi8W0urqqpaUlVSoVlcvlPQFT0zTd7U+cOKEzZ84oEokom83qzp07mp+f1/b2tqrVqvx+v9566y29/fbbCoVC+vjjj3X58mU3bjwxMaEf/vCHGhwcVCqV0szMjK5du6Z0Ou3GmY8dO6Z/8k/+ibLZrD7//HPNzc3Jtm3t7OyoXq/LMAx5vV6Njo6qWCzuiZM7keWLFy/q1KlT8vl8unv3ri5fvuwGxVvnutP66BQ+f1KGYWhiYkI/+clPlMvldPXqVa2vr2tsbEyGYei9997T9PS0VlZWNDs7q7m5OW1tbblB3PX1df3qV7+SZVlKJpP6/ve/r9u3b+vjjz9WOp2Wbduq1WpKJpMaGhrSp59+qnv37qlarerkyZM6evSoO/6TJ08qGAzK6/Wqt7dXR44cUTQaVTwed6/L5cuXdfPmTXk8Hv3Lf/kvFY/HtbS0pFqtJsuy1NPTo/Pnz+vtt99WJBKRZVkaHR1VvV7XysqK1tbWVK/Xtb6+rk8//VRDQ0OanZ3V5cuX5ff7dfHiRV26dEmGYegHP/iB+vr6tLCwoHQ6rWg0qmAwqIGBAQ0NDWlyclI9PT3yeDyan5/Xb3/7WzeS/jitEXiHz+fT1NSUfvCDHygSieirr77S7du3ValUdOzYMY2MjGh5eVm2bSuZTOq9997TvXv33KB2+3XttCai0aiGhobU09OjkZERHTt2TLlczo1RVyoV5XI5lUolTU5O6v79+7p27ZqCwaAuXLjgBqwLhYL+/u//Xuvr6wqFQvL7/ZqYmNDJkycViUTcAPjc3NwjYznsWo3H4+69USqVND4+7j5DksmkvvjiC+VyOdXrdW1vb2tubk4XLlzQ7du3NTIyorNnz+r27dva2dlxn3GJREInT55UqVRSOp3WwMCAG4FeW1tzo9kXLlxQKBRStVpVJBLRzMyMvvjiC5VKJfl8PtVqNfe5FI/HNTw8rHw+r0KhIOnre7z9PH0+n6LRqJLJpN5++21NT08rEAgon89rdHRUS0tLun79ujY3N90gezQaVX9/v/L5vHZ2dlSpVNwQ+YkTJzQ5OamVlRVduHBBExMTSqfT7hgTiYTGxsb0+eef6+bNmyqVSvJ6vQoEAiqVSu73hWVZGhwc1NGjR9XX16dIJKKenh51dXWpWCwql8tJknvvO2ut/Tui9XXruTvR7r6+Pl28eFGjo6N6+PChtra2FAqFNDY2pmQyKY/Ho8HBQU1OTmpra8u9J0+fPq2enh5JUiAQkGVZun37tm7duqVsNtvxu4p4NQAAAAAAAAAAAAAAAAAAAAAAAAAAeNMQsAYAAAAAAAAAAAAAAAAAAAAAAAAAAHgNORHo1tfOf6ZpamVlRf/5P/9n+f1+FQoF1et1vfPOO/L7/fr000/1m9/8Rjs7O6rVanvCuZZlqaurS+fPn9eHH34owzD061//Wp988onu3r2rWq2mbDar7373u/rqq6+0tbX1SMD6ceN22Later2u2dlZ/eVf/qU2NjZUr9dlmqYWFhb0ox/9SPF4XAsLC3tCo93d3Tp9+rSmpqaUzWYVCASUTCYVi8V09epV1et1hUIhHT16VOfOnZPH41E+n9fw8LCSyaQMw9D169fdWLYkDQwMaGpqSqOjozJN0w1Snzx5UmfPntXg4KB+8YtfaGBgQB988IHGxsb0xRdfKJlManJyUlevXpUkeb1eHT9+XCdPntTCwoIuXbqk2dlZN5YrfR2jbTQaymazWlpa0u7urnZ3d5XP5905dM5zYGBAV65ccSPWoVBI3/rWt/Td735XxWJRly9fVnd3t44dO6auri59+umnunPnziMRayf8HQqFFIlEVK1Wtbu7647padZfLBbTj370I33xxRfq7+/X+++/r3Q6rXA4rMXFRTfK29PTo3fffVfnz5/X3bt3df36da2tralUKrlh3K6uLnV3d+uv//qvde/ePUlfB8i9Xq++973vqVqt6tKlS0qn0/J4vv4T6c8//1w7OztKJpP66U9/qnPnzqm3t1fFYlG3b99WvV7XP/tn/0wej0f/9t/+W83MzKjRaMjj8bhrvlarKRgM6ty5c/rBD36gQCCgL7/8Ug8ePNDw8LB+8IMfqNFoaGZmRru7u+71Gxwc1PT0tP7dv/t3+vzzz+X1ehWJRFSv1/XP//k/19TUlP71v/7Xyufz+vGPf6yVlRV5PB79+Z//ufr6+nT79m1dvnzZjcjv7u4eKl7diWVZOnHihL797W+rWCzq0qVLmp+fV6FQUDQaldfr1cTEhB4+fKiBgQFNT0/rrbfe0szMjMbHx5XNZrW5uemGvjtda0laWVnR5uamEomEG0L+m7/5G926dctdR5ZlaWxsTGNjY/rLv/xLhUIhnT9/Xru7u/qv//W/anJyUj/84Q8VjUbVbDb1rW99S2fPnlW9XteNGzf04MEDTU5OqlgsKpPJPFVM2Ov16uTJk+rp6dHMzIwqlYouXryo999/X+vr67p8+bLm5ubc0HOj0dDc3Jx+8pOf6MMPP1Sj0dCnn36qBw8euPFqj8fjBqe//PJL3bt3T6dPn9axY8d09OhRbW1tKRwO69ixY6pWq1pdXdXbb7+ttbU1/c3f/I0bD5ekVCrlBqLX1tZ09epVbW9v68MPP3SD2858GoahSCSikydP6oMPPpBt27pz544uXbqkiYkJ/cVf/IUCgYD+7u/+Tvfv33fve8uydPbsWV24cEGffvqpUqmU+wxIJBKyLEs///nPNTMzo3g8LsMw3GdvrVZTtVpVMplULpdzA+9vv/22hoaG9Nvf/labm5uybVvBYFDnz5/Xt7/9bTeUHYvF1NXVpfv376taraper+vTTz91Y9atWmPsznPK+b1zHolEQufPn9f4+LiuXbum69evq16vKxAIqLu7W0NDQ/J6vZqbm1MwGNSJEyfUbDYVj8eVTqf15Zdfand3V+FwWB988IGSyaSCweAjAWvC1QAAAAAAAAAAAAAAAAAAAAAAAAAA4E1FwBoAAAAAAAAAAAAAAAAAAAAAAAAAAOA11RrcbA9DZzIZZbNZN1o6PDysoaEhzczM6ObNm9rZ2VGpVNoTzTVNU/F4XBcvXtS5c+d0+fJlra6uamlpSel0Wo1GQ5ZlubHbWCwm0zTd2OqTxKs9Ho8mJib01ltv6dKlS1paWtoTbV1cXNTW1pb6+/sVDAaVy+VkGIai0ahOnjypWCymjz/+WOVyWSdOnNDo6KiuXr2qra0t9fT06K233lJ/f78+/fRTra6uKhKJ6E/+5E/04x//WDMzM7pz5457rEQioQ8++EBvvfWWlpaW9Hd/93duNHthYUE+n0+WZamnp0d/9md/plOnTuk//If/oK+++kqnTp1Sd3f3nnm8c+eOEomEJicn9b3vfU+xWEw3b97U1taWGo2GarWaHjx4oO3tbQ0MDGh8fFyJRELXrl1TKpWSJPn9fp06dUqWZSmVSsm2bXV3d+u9997TxYsX3Tj29va2JiYmFA6HFY/H9f3vf1+JREKXL19WLpeTx+NRPB7X2NiYJicnNTg4qGg0qkKhoF/+8pe6c+eOG/Ld75q1BsodgUBAb731lizL0l//9V+7wfBqtap/+Id/0NbWlhYXF3Xjxg0FAgHF43FNT0/ryJEjSiQS+uyzz/TgwQNJUjQa1fT0tNLptFZWVtx1YlmWjh49qmQyqf/yX/6Ltre3Va/XVa/Xdfv2bdm2Lcuy5Pf7FQgEZJqmZmdndeXKFRmG4Qad/9f/9X/V/fv31Wg03PB2uVyWbdsKhUL69re/rR//+Me6efOmPvnkE62ursqyLPX29iqTyWhhYUEPHjxw1388HteRI0c0OzvrBtNrtZpM09SPf/xjvf/++8pms/rDP/xDWZallZUVXbt2TT6fT9vb2wqHw4pGoxoYGFC5XFYul5NpmrJt+7ER+NZ7yInVj4+P691339XW1pauXLmizc1NN0bc1dWleDyuUCikn/zkJxobG9Pw8LC8Xq8bgV9fX9dnn32mhw8fuuu49TgO27ZlmqaGh4c1MDCgBw8e6N69e3ti6eFwWGfOnNHW1pYikYjOnDmjq1ev6sGDBzIMQ+Pj48rlcu6ai0QiGhwcdAPzvb29Wl9f18cff6xarbbvPByku7tbfX19Wl9f18LCgvL5vJaWluTz+dwwtrNvwzBkWZYkqVgs6jvf+Y7+1b/6V5qZmXG3MU1Tvb29OnXqlHZ3d7W8vKx8Pq/19XUlEgk3Cj80NKRoNKqf/exnbrA8l8upUCjItm33WXzixAkdP35ci4uL+vzzz7W0tKSxsTGFw2GlUikVCgV3XE4U+8MPP9TRo0d16dIlffnll6rVahobG1MoFNL8/LyuXLmicrnsfm5oaEgXL15UrVZTJpNRvV6Xx+NRX1+f+vv7tbW1pUuXLmlnZ2fPPW4Yhvr6+nTu3Dldu3ZNCwsLMk1TR44c0bvvvqsbN26oVCpJkkKhkBvxbo1XFwoFraysSJK2trZ08+ZNpdPpfdexw1n7rfd/T0+Pzpw5o76+Pl25ckW3bt1SpVKRaZoKBAIyDEMPHz7U3NycTNNUKBTS+Pi4MpmMPvvsM62urqpUKrn7TqfTqlQq7uv2e+1x9x8AAAAAAAAAAAAAAAAAAAAAAAAAAMDriIA1AAAAAAAAAAAAAAAAAAAAAAAAAADAG6A9MmwYhhu4DYfDOnXqlMLhsL744gvNz8+rWCy6UVUnetrd3a0zZ87o2LFj+uqrr/T555+7kWsnKmqapqLRqOr1uhsEPmhMrTFQ0zQlyQ2pXrx4UVtbW7px44YajcaebZ0It8fjkc/nk2ma8nq9GhoaUk9Pj9bX1/XVV1+pVCrp9u3bbhz23LlzunDhgsrlsn71q19pcXFRpmmqp6dHfX19KpfLunHjhrLZrJrNphuInZ6e1u7uri5fvqzFxUVVq1U1m03VajVVq1X19vbqrbfeUigU0u3bt3X06FEFAgHFYjF98cUXbsS3VqtpcXFR/+k//SeNjIzo+PHjOnLkiLxerz7//HPt7OzItm2Vy2Wtr69rZ2dHqVRKp0+f1sWLF/XJJ5+oWq2qv79f09PTWl1dVT6fVzAY1IULF3T8+HF99dVX+vLLL5VKpeTz+VQqlXTv3j1JX0dlp6am5PP5tLKyoqmpKU1NTalYLGppaUmffPKJ/H6/3n33XZ06dUoLCwsHBqw7RdKdoO/Y2Jhu3LihdDqt7e1traysqNlsyrZt+Xw++f1+lctlZbNZ5XI5pVIp5XI5HT16VCMjI5qfn5dpmhoYGFBfX59u3bqlUqnkrsmenh6dOHFCV65c0ezsrCqVijuWWq3mBm5PnDiharWqX/ziF/riiy/k9/t15swZDQ0N6Wc/+5lu3rypRqPhrr2BgQHV63WVy2UNDw/rxIkT+s1vfqPPPvvMXXPj4+M6ceKENjc3df36deXzeTWbTfn9fo2MjLiR8HK5rHq9Lp/PpxMnTujMmTP6m7/5G1WrVfl8Pt25c0cPHjxQqVSSaZr6j//xP2pgYMANyk9NTalQKOjmzZu6ffu2MpnMI/PePv+trwcGBvTWW28pnU7r+vXrbrzaMAx1dXVpcHBQjUZDv/71r1Wv1xWNRnXu3Dlls1n96le/UqPRUKVScSPL+117Z+6c616r1XTt2jU3ZixJXq9XIyMjmpiYUD6f1+TkpD7//HPdv39ftm0rmUxqaGhIu7u7KhaL6urqUiQS0ezsrDY2NrS9va2FhQU9fPhQ2Wx23zV5EOc55vV6VS6XVSgUlM/nlcvl9pyf8yyyLEuDg4N69913ValUtLCwoGg06q7BZrOpUCikEydOKBQK6f79+8rn80okEhoZGZFpmtra2lIoFNLAwIBqtZrW1taUSqXc+XPC5KZpamhoSOfPn9fc3Jz+9m//Vg8fPlQgEFBvb6+KxaJWVlbcgLXP51NPT4/GxsYUj8c1Ozur3/72tyqVSu51bzab+uSTT7S1teXGn2OxmM6fPy/btvXVV19pc3NTkhQMBtXX16dQKKT19XWl0+k9975zb7z//vvyer26cuWKbNvWxMSEvvOd72hlZUW3bt1SuVxWOBzWiRMn9M4776harWphYUHd3d0ql8v6zW9+o+XlZfcec47R+t3Uvractd26xoPBoMbHx9Xf36+NjQ3NzMy4z9lAIKBEIqFcLqfFxUXV63UdOXJER44c0Z07d/TLX/5SGxsbqtfrajab8nq96unpUSAQcCPW7ccjXA0AAAAAAAAAAAAAAAAAAAAAAAAAAN5UBKwBAAAAAAAAAAAAAAAAAAAAAAAAAABeQ51itp14vV5NTk7q1KlTymQyWlhYUKFQcGOnktww78DAgIaGhrSysqKrV68+sp0TxR0ZGdHu7q7W1tZk27Ybg20NVrfGSh1OxDUQCGhqakrhcFiXLl1SJpPZE5d1wtuVSsUNIktfB03j8bgkaWdnR8Vi0Q1pRyIRnT17Vj/+8Y9VKpX0V3/1V1pZWZEkdXV16ezZs/J6vfr1r3+tu3fvqlwuy+/368iRI3rnnXfk9Xr11Vdf7YlXO2MJBAKanp5Wd3e3fvnLX6pYLOrkyZPy+Xy6fPmy5ubmFAqF5PP5lM/nValUlM1m9eDBAxWLRZ07d07hcFi9vb3K5XJurLvRaKharWp3d1flcllDQ0OKx+PKZDKanp6Wbdt6+PCharWaxsfHNTY2prW1Nd2/f98NLScSCfX29sq2ba2srCgSiejo0aP64Q9/qKWlJa2srOjXv/615ufn3Yjv+Pi4dnd3VavV3HN8knirZVmKxWKSpHw+L8uy9sxXMBjU4OCgTNPU6uqqisWiTNNUV1eXenp63Hi3bduKRCLq7e1VPp/XzMzMnih6vV7XzZs3tbGx4YZrWwUCAR05ckSDg4Oan5/XrVu3ZBiGJicn1dPToy+//FI3btxwr6cTOU8mk9ra2lI2m9WRI0dUKBQ0OzurYrHoBs3fe+89maapGzduaGVlxR2Xcx0LhYJWV1cl/bcg++nTp7W+vq5f/vKXymQybgDdOXaj0VA6nVY6ndbMzIy6uro0Njam48eP6/z58woGg7p8+bIbb+50j7deJ4/Ho+HhYQUCAd2+fVubm5tqNBruXI+NjSkSiej+/fuanZ2Vz+fTyZMnVSqVdOfOHW1sbLhx5Vb7rYVAIKCBgQFFIhF3bTlhcEny+/0aHBzUwMCAdnZ2dPv2bc3MzLhB8+npafX39+vevXtqNpsaHh5WpVLR1atXdfPmTeXzeTc4vN857/e7dvV6Xb29vRoZGdHa2po7fp/Pp2azqUKh4Ea0jx07pmw2q5/97Gc6fvy4BgYG1N/fr5WVFRmGofHxcZ06dUqGYSiZTOqDDz5QNBpVtVrV7Oys5ubmFA6HFQ6HJX39nAoEAmo0Gu6zq9lsKhgMamxsTKVSSb/97W91//591Wo19fb2qqenR7lcTvl8XoFAQJFIRD6fT8lkUqOjo/J6vbp586a2traUTCb1zjvv6NSpU9re3tb29rYb3A6FQjp58qQSiYSuX7+umZkZNzIeCoUUi8XUbDa1vb3t3v/S10HvWCymc+fOKRQK6Te/+Y0ymYympqb0gx/8QJZl6eOPP1Y+n1coFNKxY8f09ttvy7Zt3bp1S/V6XbFYTLlcTru7u9rd3d2ztpx7T9KeNXPQeguFQurq6lKpVNLi4qLy+bxM01Q4HNbQ0JC6uro0NzenYrGo4eFhffvb31Y2m9UvfvELra2tqV6vu/uKRqMaGhpynz2FQmHf4xOyBgAAAAAAAAAAAAAAAAAAAAAAAAAAbxoC1gAAAAAAAAAAAAAAAAAAAAAAAAAAAK+h/YLV7bxer/r6+lQoFHT9+nVtbGzsicQ64dNAIKBEIiHDMLS0tOQGPp33TdNUb2+vG4K+ceOG0um0G6V2Qq3tcdlOrwOBgAKBgO7evau5uTk36Nx6Tl6vVx6PR+l02g2ter1e+f1+2batarUqwzBkWZa6u7t19uxZffjhh0okEvr5z3+u5eVlN5x7/vx5HTt2TLdv39atW7dUKBTk9/t17Ngx/aN/9I80MjKie/fu6cGDB+45tc9NT0+PdnZ2ND8/r93dXc3Ozrrj8Pv9Gh8fd1874VS/369YLCafz6d6va5IJKKxsTFlMhmlUil3Xn0+n2KxmMrlshqNhvr7+zUyMqLl5WWtr6+78WTTNBWPx3Xy5Ek3XBwMBpXNZjU/Py+Px6PTp08rGo3q008/1ZUrV7S1taVKpeLuwzAMxWIxGYah1dXVPbHuw667ZrOpTCajcrms0dFR5fN5N2S+vb2tcrmsRCKhcDgsn8+narWq3t5ed46c6y5J4XBYgUBAS0tL2t3d3XOsnZ0d7ezs7IkAt6rValpYWNDa2poymYwymYy8Xq8WFxfd6+RE0B3xeFzRaFRzc3NKp9OqVqsKhUJ65513NDk5KdM01dPTo0AgoK2tLffcnPn3+/2KRCKSpEQioUgkonK5rP7+fvX39+vatWvKZDKqVqt71nIsFpNt28rlcqpUKqpWq9rZ2XGjxefPn1c0GlUoFHID1p3mvZVlWUomkzIMQ/V6XZZlKRKJaGBgQCMjIzJNU0tLS1paWlKtVlMoFFJ/f79yuZxWV1c7Xvf9gtHOtUokErJtW2tra+4zwjRNN0w/NDSkZrOpmzdv6tq1a+69kEgkNDo6qtXVVd27d0+NRsONPDv3jG3bsixLHo9HPp9PXq9XzWZTuVxuT8D8oPVq27a2tra0vLysM2fO6Pvf/75yuZxyuZzS6bS2tra0tbWlXC4n6euo9crKijY2NlQqldRsNvWtb31LU1NT2tnZkWmaOnLkiAYGBlStVtXd3a3V1VU9ePBA6+vrymazqtVqbpy8v79f3/3ud919bm5uKpPJyDAM1Wo13blzR3fu3HHXiHNPGoahRCKhs2fPKplMan19Xfl8Xh6PR5FIxI29f//739fk5KS8Xq+uX7+ucDisEydOKJfLaX5+XolEQn19fVpZWdGDBw+UyWTce9/j8bhxbSccX6vVVK1WZdu2JicnNTw8rJWVFXm9Xn3nO9/R0NCQenp6lMlkNDExoYGBAQWDQfX29mp3d1d3797V4uKient7ValUFAqF1NfXp0wmo1qtJo/Ho1AopGQyqXA4rJWVFS0vLz8SsW6/ts6asixLpmm6++jq6lJvb68ajYaWlpa0ubkp6eto+NLSkubn57W6uup+p0iSz+fT2NiYYrGYlpeXtbW15YblO60lAtYAAAAAAAAAAAAAAAAAAAAAAAAAAOBNQ8AaAAAAAAAAAAAAAAAAAAAAAAAAAADgNeMET1tft0aXW9XrdS0tLWllZUUrKyvK5XJuVNbZttlsupFgj8cjj8ejcDisSqUiy7IUjUY1Pj6uY8eOqVQq6cqVK24genBwUB6PR6lUSvl8fk841Nl36/iciO/Vq1dVLpdVLBYfOTfp61huKBTS2tqaG7CuVCp7Qrz1el2BQEDDw8Pq6elxY7hOpDkSiej48eP60Y9+pIWFBV29elX5fF6JREInTpzQ9PS0+vr6tLW1pXv37mljY2NP0NmZl9Z9Dg8Py7IsNZtNFYtFVatVNRoNRSIRxeNxxeNxlUolhUIhDQ4OKhKJaHt7W7u7uwqFQioUCqpUKm4Mua+vT2+99Za6urr02WefKZfL6fTp08pkMrp3754KhYKazaY2NjZ07949jY+PKxaLyePxaHt7W3Nzc9rc3FS9XtfAwIBSqZTu3bun+fl55XI5NxTrzKthGBocHFStVnM/t5/91pRt21pfX9etW7d08uRJnTx50o1oZ7NZlUolra+va3JyUidOnJDX61W9Xtfq6qo7Xmdt5fN5zczMKJVKudfZOcZ+x3dUKhUtLy+766vZbKpWq6lUKu0Zv8Pr9er06dMqlUp68OCB8vm8bt68qXK5rHg8rlwup+3tbdXrdR0/flzRaNSNhNdqNdm2rVKp5MZ8v/e972l2dlbXrl2TYRjyer2S5Eaew+GwJCmbzWp8fFzNZlNLS0tKpVJuXD2ZTOrIkSPq6urS3bt394TjDzp351xTqZQGBwd1/vx5HT9+XJJULpe1urqq5eVlNyRsmqaCwaBCoZAWFxeVyWT23Pft17z92IZhyO/3KxgMyrZtVSoVBYNB979CoaDu7m7F43F9+eWX+uKLL5TNZt3AfSKRUCqV0uzsrDY3N2UYhra2tjQ0NKR33nlHY2NjKhQK8vl86urqcuP1c3Nzunfv3p6AdSetz7J8Pq9bt25pbW1NwWBQ9XpdxWJRhUJB5XJZ9XrdfS4tLS2p2Wy6z62ZmRnV63X3vhscHFQsFtNnn32mmZkZ7e7uqlgsqlKpuNFtSUqn0/ryyy81Pz8v0zRVKBSUz+fdZ5YkVatVbW1t7ZnnZrOp9fV1Xb58WdFoVOVyWTs7O8rn82o2m9re3tbGxob6+/v17W9/Wzs7O7p3755u3bqlTCaj7u5uNRoNbW1tqVgsyjRNffnll8pms0qn0+6xDcNQoVDQzs6Oenp6NDExoXA4rLW1NS0tLalarcrv9ysajerUqVMaHx/XysqKPv/8c3k8Hg0NDcnv98u2ba2srOjevXvK5/PK5/PuMRYXF3X69GldvHhR09PTqtfr8vl8kqRisaiFhQXt7u4+suZar13rOszn89rY2FA4HNb4+LgSiYTy+by2t7fdMHi9XpdhGJqbm9Pi4qJ7XVrD4P39/RobG1Mmk9Hq6qo7t/uFqglYAwAAAAAAAAAAAAAAAAAAAAAAAACAN43BH1ACAAAAAAAAAAAAAAAAAAAAAAAAAPD6MgyDPxT8PWQYhizL6hi3bQ/fBgIBhcNhlctllcvlPYFpZxsnpjw2Nqa33npL4XBYuVxOtVpNgUBAgUBA5XJZs7OzWlhYUCaTUbVaVV9fn/74j/9Yq6urunr1qra3t/dEiKVHI8it/zoRWenrYLETHDVNU++9955Onz6tK1eu6P79+yoWi7IsSwMDAzp69KiSyaTq9bpyuZy2traUz+d17tw5fetb31K9Xlc2m1UoFNLExIS2trb07//9v9fMzIzi8bi+9a1vqdFoaHNzU7FYTJlMRg8fPnTjxe1z6fF4NDU1pbfffls+n0+5XE7pdFqzs7NaXV1149HOuJxoaz6f1/LysjY2NtTX16fp6WmVy2Xt7u7K6/UqkUhocHBQ6XRaly9fdmO63/rWt7SxsaGlpSU33Guapnw+n/x+v0zTlG3bqtVqqtVq7ph9Pp98Pp+q1aob4m4PEvv9fv3FX/yFtre39fHHHyuVSj0SHd/v2rX/7Pf7FQ6HZRiGarWaG+u1bVsej0fBYFB+v1+GYaher6tcLrvB79b9OefTPoZOxz/ob6M7hXBb34tEIrpw4YJmZma0sbEh27Zlmqa8Xq87BmcdBoNBeTweVavVPdFjr9ereDyunp4eNZtNpVIpFYtFDQwM6I/+6I+USCSUTqdVKpWUz+c1Ozurubk5jY6O6uzZs6rVatre3laz2VRPT4+SyaRqtZru3bunO3fuPBL4bY2/d5qbnp4eTU1NqaurS9VqVbu7u9rZ2VE2m1W1WnXn1efzaXJyUt/73vf0D//wD3r48KF73R/39+bOvCYSCb377rs6evSoMpmMMpmMKpWKlpaWND8/L5/Pp6mpKS0tLWlra2vPdY7H4zIMww0eG4ahZDKpY8eOaXh4WF6v111DxWJR29vbWl9fVyaTUalU2rOvw1x7Z105sXkn1t1pbp3njvOez+dTs9mU3+/Xj370I5mmqWvXrml9fX3PnLYfzzlma1DdOe5+a9j5nGVZsizLHaOzjd/vVzKZVDKZlPR1DD2VSimfz7vrV5K7Pp1zbjQaj4SiLctSKBRSJBKRaZqqVqsqlUruM6a7u1sDAwOSvn525XI5FYtFdxyWZaler7v3cOs4LctSNBpVPB5XJBKRx+OR9HVMPZ/Pq1AouAHx9nHtxzRNd7w+n8+N01cqFff51mlOW9eDZVk6f/68+vv7NTMzo+Xl5UfG0L6fx62133fNZvPR/+EBAAAAAAAAAAAAAAAAAAAAAAAAAABeaZ6XPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8uU7xakl7wqpOlLVYLKpare6JM7dua9u2yuWyFhcXVSwWlUwmFY1G1Ww23RBvJpNRNptVpVKRbduyLEtnzpzR6Oiobt++rUKh4IZa2+Ounca4X3zUea9Wq2lnZ0dbW1tucNS2ba2vryubzSoYDMq2bTfW3Gg03Eh3b2+vPB6P8vm8+vv79dlnn2l9fV0jIyO6ePGiMpmMbt++rZ2dHTe+7MS9O81vvV7X/Py8MpmM/H6/6vW6SqWSO6/NZlObm5vK5XIKhUIyTVONRkOVSkWVSkWNRsONgQ8PD2t0dFT1el3pdFozMzNaW1tTNpt14983btxQqVTaE2l1rlGlUul4DSU9EnbtFIQOhUJKJBK6c+eOe83202mNtQZ7neN1uq5OWDufz+973Vvn90mO/bTK5bKuX7/uxn8luWuo/Ri1Ws2NA7eGeuv1ulKplLLZrBu7bTabWl1d1X/+z/9ZPT097rFyuZwbe69Wq/J4PJqcnNTk5KQkKZVK6erVq1pbW9POzo7K5fKeqPth4tKZTEa3bt1yQ831el31ev2R62qaprq6uhQIBLS9vb1vtHw/hmEom83qq6++0s7OjqLRqHK5nNbW1rS9va1yuaxSqaQbN264z4hW6XR6zzkZhqHt7W0VCgXdvn17T0DcuSa1Wu3Q42ydN+d1o9E4MEbcep+0HqM1sD0wMKBPP/1UGxsb7vXZLyjuxKqlr+d7vyB7p985161duVzW2tqaNjY2JGlP4Lo9tuy8bo/BO/Ni27Ybk26dM2fbTCajfD6/J/btvFepVNxzao+AS1Kj0VA2m1WhUJBpmu6941yDw8bS2+emWCyqVCrtOXZ72P6geXXOOZvNamNjQ5VK5ZmfIwAAAAAAAAAAAAAAAAAAAAAAAAAAAK8bAtYAAAAAAAAAAAAAAAAAAAAAAAAAAABvsFqttidq3K41AlqpVLS+vq6dnR03QFqv190AqRMuNQxDpmmqUCjok08+0cOHD1UqlfbERQ+KV7e/bg+pNptNzc7OanV1VTs7O6rX6+57Tog7l8vt+bwkra+vq1gsKhAIyO/3a2pqShMTE8pms3r77bcVCAS0srKi+/fva2dnxw1GHxRAdeanWq1qe3t7T2i30Wi47ztjao3Dtv6bSqVUKpX08OFDWZaler3uBrfbg8NOHHm/uWod1+Pmt5VlWRocHFS1WtX8/PyBQd7D2u96O9fzcfs+bJz4WTlRdGduW8fZ6TjtceDWbVvDyK3rY2NjQzs7O3u2ca5roVDQnTt3tLy8rEAgIEkqlUoqlUqqVCqq1WqPRJgPw7btPVHzTtfDNE35/X51d3e7QfrH3aftnPnY2tpSJpOR1+t117BzfzYaDTcG3n4e7UFrJ0ZcKBRUKBQe2f5Jx/ek2z5OIBDQ8ePHlc1mtba29sT3Svv4D/rcQfe0EyU/aNtO8e72fbQ/Xzvtp1NEu/2eOOg8nWfifp/vZL/zaA1QS9rzrD0sZ0zLy8tuFL097t2+PXFrAAAAAAAAAAAAAAAAAAAAAAAAAADwJiJgDQAAAAAAAAAAAAAAAAAAAAAAAAAA8AZ5XDhW2j8q6gR3O4WdW8OiTgz49u3bajabKhQKj4RPH3fM9lBpe7x0d3dX6XS6Y3DUCZO2769eryubzapQKCgWiymZTCoWi+nYsWPa2NjQnTt3tLKyomw2u+94D4rJNhqNjoFXwzBk27YMw9gTcG2Pv+bz+T2B69ZzOChA2z5P7fPVrjVW2yoUCmloaEg7OzvKZrMHxlwf50WGXp3z2u88nkWntdR6zMN8tlN01wk4NxqNjmN2Ys3lctmNwzvXf79Y+UGvW8fxuDlyAtbOPevc30/KCbfXarVHgsiHGUcnjwugf9MMw5Bpmurr69Po6Kju3LmjYrHY8Tl6kIPGvt91e5ZY95OG4g+73h93f7R/R7R/5jDjar3fn3R8+4XPW18Xi0V3XE8awQYAAAAAAAAAAAAAAAAAAAAAAAAAAHgTELAGAAAAAAAAAAAAAAAAAAAAAAAAAAB4zXSKcB42ztkp8Nkep+50jPZQqW3bSqfTe97bL1Z62Bht6zaNRuOJYqPOeZimqXg8rnPnzunkyZNaX1/X/fv39fDhQ62vr6tcLj9R1Hu/mHSn6GprzHi//Rwm9vus4d79Pm9ZlnK5nO7cuaNyufxCA8HPY9+P20f7XD9JBLlTnP2wQej2e+1JrqUTie+0zbNEmzudj8O2beXzed27d++pr/uTBJMPe9++yHvgcTrNtTPuQCCgkZER2battbW1pw5+H/a4b4pnOa/DfvZpjrFffLz9vnuTrw0AAAAAAAAAAAAAAAAAAAAAAAAAAPj9RsAaAAAAAAAAAAAAAAAAAAAAAAAAAADgNdcp4nvYwO7jgsvt27a+3x6/3m/bTsd50mBp6+c7fdY0TQWDQY2MjOjo0aM6ceKEJOnKlSv66quvlMlkVK/XnyjE2378dp3m7klD3a2/O0xA9Umi3u1KpZJmZ2dVrVafKcr7okKvT3JurdHpx0WqnX9N03zhgdqD1svjtjlshH6//e332rZtFYtFN97+oubgWdbm0xyrPdr9JOd10HMlFAopGAxqaWlJu7u7HZ8bhxnTQcd9mjHvty/DMJ76/Nu1XsNO6/NpxneQw457v7XVfi8dtD9nnjqNjXg1AAAAAAAAAAAAAAAAAAAAAAAAAAB4kxGwBgAAAAAAAAAAAAAAAAAAAAAAAAAAeM10ikO32y8WfZjI7JMEdp8k+vkskdWDPmeapqLRqCYmJjQ6OiqPx6NSqaR0Oq379+8rnU6rXq8/8XifZQ6fxosOqFarVW1vbz/zcV6H0GvrWtsvWvu4957FYWLUTxpxb/U091Kj0Thwm077fF5r/XnP89OE4w+zH+nr+2RhYUGFQkH5fF62be95/3nFjp9HvPp57Mvxou6F/Y6z33udjn+YMR20Tadza/9ds9l8LZ5tAAAAAAAAAAAAAAAAAAAAAAAAAAAAT4qANQAAAAAAAAAAAAAAAAAAAAAAAAAAwO8pJ+DZGhRtj7V2clBg9EmCt63bHhQOPSiqa5qmIpGIJiYmNDw8rHw+r62tLUUiEWWzWe3u7j423LvfMZ9XqLZ1ny/DiziXgzztsZ5kDe0XiG793UGx9WcNMx9mX88aVT5ojC/iWr6oeHWnfb+qDMNQPp9XqVRSo9Ho+Dzc71w6zd+LOu9v8n5+UQ7zPfI84u3POiYAAAAAAAAAAAAAAAAAAAAAAAAAAIDXHQFrAAAAAAAAAAAAAAAAAAAAAAAAAACA18jjorKdwp+HDeEahnHoOGjrNk8Tr273NJ81DEPBYFCjo6MaHx/X2tqa5ufnFQgElEwmNT8/r0Kh0HHMh/G47fd7v3UODwqxfpP2Cz6/qGM9D6/K3L1I7ffbfj+/DC/7+C9Ds9mUbdtuuPpZ5uB5zl+n5/Jh7ueDnucHrb3nrfVe3u9Z1Ol7pNP4n2YeDvN9+E09HwEAAAAAAAAAAAAAAAAAAAAAAAAAAL5p5sseAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ5Me2jTiYK2/vwkEer2f1tD1ocNYT/J2PcLZTu/7/SZTj97PB4lk0kdP35cxWJRMzMzyufzikQiisVi2traUrVaPdR8HObYjk77O+i8fh9DwIe137w/7T46zXXr9XoRkdonvefax9K6dp4Ewd0X57DX85vytGM5bLz6aT1unh53bx6038N4HvfM04wPAAAAAAAAAAAAAAAAAAAAAAAAAADgdULAGgAAAAAAAAAAAAAAAAAAAAAAAAAA4DXSKS79uIjnQYHdxwV/W4/7uDHt99n9xtRpfJ2i2p3GYpqmAoGA+vv71dXVpdnZWeXzeZmmqVgsplqtpp2dHdm2fegw6bNEa59kfr9pzyMS/by0j6U9mt7+3kHz12ndHPT7lz0HB43xadfeyz6n191+gfo3Saf7/1nP8UnXXfvxOh3/aZ9TzWaz4/PjoP29aoFyAAAAAAAAAAAAAAAAAAAAAAAAAACAF8nzsgcAAAAAAAAAAAAAAAAAAAAAAAAAAACA5++wIdCnDYYedptOseLnwTAMBYNBhcNhlUolFQoFSVIwGFRvb692dnZUrVYPfUzbth/Zf+vPrefTHkV+USFUJ8z6oo9zkOdx/drj5vvFdFu3exFepWBta4j+sNtLj0aw8Wxe5By+qGffN22/CPyTfA88qcd9L7XfD52C1Psdu/U59DpfFwAAAAAAAAAAAAAAAAAAAAAAAAAAgMMyX/YAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8GQMw5Bpmo9Elp3/DnKYYGf7fts/3ykWehjt+zVNc98gb6fzaI2WOp83TVOWZSkej8vn86m3t1d9fX1aX19XrVbbd1+d9u3sb79jt8akO73X+v7jtnncWBytgdaniY0/q2e53gft86Bjvan2C3cfZtvnfewXfbxX3X736NNoXbft9+6LuH+e1PN4Xu/3/pM811o/8zw8S8z9eY4DAAAAAAAAAAAAAAAAAAAAAAAAAADgVed52QMAAAAAAAAAAAAAAAAAAAAAAAAAAADA4TjRzfZYamvkuPX3zu9aP9O+v04OGwN9kqhye/x5v6hq+z47bW8YhmzbVr1el2EY6u/v15kzZ1QulzU8PCxJmp2dVaVSOdTYOo2zPabdPsft420d934h7ieZ1/2Osd8YX6b91pdjv7X3qoz/m3TQ/fK4tfIs83WYWPZhr0n7Omxfm6/DdX0RQfhO+3wd5uKga9YpyH2Ya7zf3LZ/9nHPzP222e/5fJgxPe77BQAAAAAAAAAAAAAAAAAAAAAAAAAA4E1jvuwBAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Ok8a3TT+Xzrfwdt226/WKsT2u70fvtxOm13GLZtq1AoaGNjQ7lcTolEQidPntT4+Lg2Nze1urp64Hl1OmancZmm2fH9Tp/bLzr8tNfpcfP4ojzpmB8XA37cXL8JnnQNt17b1jD9ywjpPu3xOq371/m6Hjbe/STPlKd9vn1THje2pw2pt8+T8yxt/+zjvjMO40nW3EHn8zqvXQAAAAAAAAAAAAAAAAAAAAAAAAAAgIMQsAYAAAAAAAAAAAAAAAAAAAAAAAAAAHiN7Bf4bI1/PkmY+qDjPEl4+HHHsG37sfHXwwRMnfcNw1C5XNb8/Ly+/PJLNRoNXbx4UYZh6NatW8pkMgeee/vvO0WEm82mO248vd+H+XuWCPTLiFZ3GsdhvcpB5mfVHrE/jCd5br1KWr8vOun0jHwWTxqKPmwY/aD5b/196/Hb77tX4R4EAAAAAAAAAAAAAAAAAAAAAAAAAAB4UQz+kBIAAAAAAAAAAAAAAAAAAAAAAAAAgNeXYRj8oeDvEcMw5PF43NCy8zvHk8aa9zvGQaHRpwm8dvp862cPcw77jdUwDPl8PvX29qqnp0dra2tKpVKq1+uP3d/zCrLut9+n/TveZ/38s3raiO/LGO/LOu6TetZxPu098rJ9U9fnae6ZTmNrNpvuvvaLH7cf81nH8aSe15w+z2tz0L7a5+kwYeynCap3+sxh75tms6lGo3HoY/4+azabr16NHQAAAAAAAAAAAAAAAAAAAAAAAAAAHIiANQAAAAAAAAAAAAAAAAAAAAAAAAAArzEC1r9fTNOUZVl7fneYCGl7dPVpYriGYci27QPfP6zWSKzz2Sc5B+cznULezhj3O8f22GlrrPZJg90HBVuf5W94Lctyz+N5/i3w04zrdQlEvyyHnZ9nmcfDrjvsddBz7qD7/WnC9i/qGj2PdfOinlMHHbP9uIf9zml/rj8udv24aPVht7Vtm4D1IRGwBgAAAAAAAAAAAAAAAAAAAAAAAADg9UPAGgAAAAAAAAAAAAAAAAAAAAAAAACA1xgB698vpmnK4/E8EuJsjzEfFF1uDVg3m81nCpgedJxOnjbyethIaft4DhutPUzwtP2zTxMBf5zHBWefdd9PEitvxd8jd/Yir1en4zja79v26C8OHzH+pubtVbs+30R4vXUfrT/btn2obQ/z/dL63fe4a7vfvp376aBx4b8hYA0AAAAAAAAAAAAAAAAAAAAAAAAAwOvH87IHAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCfTHs7dL+75osO2rftuNpuPjVgfFBt93HEOEws+7PGf5LjO5/aLhj+twwS/n5dv8lh4cQ5ac0+7tp/ms8/Li3o2HRSqN03TDRU/7r5ofX6+SvHpZ+Wct2makjo/3xzPI3LdKbb+uGMcdr4P+2xrD2fzTAQAAAAAAAAAAAAAAAAAAAAAAAAAAL9PCFgDAAAAAAAAAAAAAAAAAAAAAAAAAAC8JtqjmweFWg9634lNP88o60FR0tZjPc1xD4pXPy7ifRj7jedFRk73G/eLCOU+6T7fpFjvYbWv18N+5kVH4jsds9XTrtHncd88qxc1ZwfttzVifJjjv2n3Qqdw+bOcY6f1c9D9cNh4+EHHOOzabR1D63feYb9HAQAAAAAAAAAAAAAAAAAAAAAAAAAA3hQErAEAAAAAAAAAAAAAAAAAAAAAAAAAAF4zTnDzoHi1tH/wuTXk+azhzk4R0f3G9bTHaj/X9qD1k8ZQnyagvV84+En21Wm8nYKqeP086/rebz+Pi9Q/q6cZ89PEvl91r+M9+TRr7psINT/tMVrnfL9z6xSl7rSf/caw3/dVa9gcAAAAAAAAAAAAAAAAAAAAAAAAAADgTUPAGgAAAAAAAAAAAAAAAAAAAAAAAAAA4DVgGMaeaPJhIrcvW/uYD4prP0kwtnVfrf8eZg4et81+42gPVjtjeJK5P2jbV/H6/T552nvoRVy3Jw3wvq5eZgi7dY7bn1POv89zTK/q/X1QIP1Znqftc9fpWj/u+j9u/vd7/1WdawAAAAAAAAAAAAAAAAAAAAAAAAAAgJeFgDUAAAAAAAAAAAAAAAAAAAAAAAAAAMBrwLIs+Xw+mab5SAC0UxC002tJMk1TpmlKkmzb3hPD7hQt3S/k6mz7uJB2p7G1RmKdsbR+9mkjz84+Hjcf+73f+t5Bx20/RntM+3Hj7BRuNU1Ttm13HMNBse+nicy+qsHzl+1VikO/yGv0rPt+VdbPYe83R/szqD1iLcm9B9u3P+iee9L78VXytM/ads+6Jg4bDH/SaPVhrs3rds0AAAAAAAAAAAAAAAAAAAAAAAAAAACeFAFrAAAAAAAAAAAAAAAAAAAAAAAAAACA18Dp06f13e9+Vx6PZ08w2TAMN0QtfR3jbDQa7s+GYciyLDcw2mg03Ah2s9ncE2x1IsrNZlOWZbnv2bbthqYbjYYMw3Bf7xcedcbQKXTt7NN5rzWobdu2e4zW/ZumKY/H455D6zk727afW/vxWo/j7Nv5uTUg7Wh9v/WcG41GxyC3aZruvDnn3zpPzvk5LMt6ZF/tUd6D4qrOHLQeyxln+/Gc163Xwzl+62fbj+3Mv7Nd+/m1jsPZzplLZ60616v9OK1r0tlP+zUwTdNdD63X29nWsqxH1rHzuYNixO2v6/W6ew6tP7feE63r3DRN1ev1PXPQ+p5z3SWpXq/vu77a7x3nvFo/3/5+++ec69p6/Zzza513Z120nnenOW8fY/vr/QLurdu0Px9at289ZqeIdPs5tP7Oud6d7ov94vWt27evvda5cMbW+vv247WeT+tcdHoetO57v3NtP5dOn23d1llHreug/RnjaL3e7efk3Jetz4VOWvfdqv26t55X6/On9bzb79/Wedhvv/tx9lev11Wr1fbciwAAAAAAAAAAAAAAAAAAAAAAAAAAANiLgDUAAAAAAAAAAAAAAAAAAAAAAAAAAMArzjAM5fN5zc/P7wl8tsaAnde1Ws197Wzr8/ncEHB7MLo1KtoeSnW2kSSPx+O+dmK4rcHi1vF0Cji3R1+dwLGkPSFlwzAeOQfLsuTxeOT1eiVpTxDZ+Uzr2CzL2jN/zuvWuWs939bgcGvEtj046+zHCSo7x2uPtzrbdApKt16r1pBr67m0/36/mLEz3tZzaz2n/eLczrYej8eNNUtyg9P7RXRb5885v9ZwbOt1bDab8vl8sixL9Xr9kciyMy+ta65Wq7m/c+bAWWOtx3dC5s65tUZ4W4/hcN5z4ttOULo1Bu+sqdY17fzXet+0rpV6va5Go7FnfTnbOWN0At3twef2oG97DLj1Ojrn0Om91uB1p7hx6zVs/df5vHNtWu/v1lBy++fa9+383HrP1et1WZYlr9frrg/nfefebp+31jXmnEP7M6n1XnJC4865t67b1mdW6++da9E6p52eY61z3bp+Wudtv21bg+ytc9JpXTqfPygg3f5553wqlYo7due56Mxr6/Ozncfjcdems36dsTrr3LlPnPN0rmdrtP6g0LSzliqVinvNqtWqG5xv/05o3aezLjoF2Vv/azQaKpfLunPnjpaXlw+cOwAAAAAAAAAAAAAAAAAAAAAAAAAAgN93BKwBAAAAAAAAAAAAAAAAAAAAAAAAAABeA2tra8pkMnviwp0Cr60x1Nboa2sUufX9du2h4tZQ8H7btP7e0RrnbdceW24f235R59bI9H7h7dbIa+v7naK7ncbSHoTeb5vWkG6neew0J0/roID1fsfc7xpJj8Zn2wPcreFrSW54tnVbhxO6bf3X4fF49gSg22PI7QHr1tBz+75aOYHc1vG0X6NOWsPTrRF2R2ugtz1q3j5u59w7jbU1qNxpLjuNq9PYnZhwp8+1rgln7ltfHzQH7ds617c1rL3fvb3fM0OSu49areaGkuv1+p511Sk83ylifNC8tI+9/Zxaz7X9WAdFmNtj1vvNo3O81rlovdadgvbt59m6Xafzar832vflxN4lyev17rn/WgPWrfdm6zk6x3HG5Zy3EzN3nnGtx2/9bnF+bp/3Ts9N0zRVqVT2zJ3z/n6f3+9+aY1Yl8tlFYvFA5+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAkAz+IBMAAAAAAAAAAAAAAAAAAAAAAAAAgNeXYRj8oeDvif0ira+zx8WfX3UHRX1fpk6h7ladAtbPI7R90Dj2e699XO3vtQfbn2XfB81Lp7XY/rv95uhZ1vHjQtHP+7o87f46zfdBY3cixJ3mpX0f7de7PaLdft1bo+WOg0LR7cc+KNB9WJ3GdNi1uN82+32+03jbI9ntMe32bQ8Tdm8NWncKWLf+e9jza41jd9q+0zXeb+ztc1yv11Uul1WtVg+MtuP5ajabz//LAgAAAAAAAAAAAAAAAAAAAAAAAAAAvFAErAEAAAAAAAAAAAAAAAAAAAAAAAAAeI0RsP798SYGrAG8uV5UhBvP37NE2Nv3Iz0azX7auHe7TnFu27afy9hxOASsAQAAAAAAAAAAAAAAAAAAAAAAAAB4/Xhe9gAAAAAAAAAAAAAAAAAAAAAAAAAAAABwMMMwiMACeC21x4zx6nleAehms+nu63HXneg0AAAAAAAAAAAAAAAAAAAAAAAAAADAN8N82QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnhWBXODVxL35++Wbvt6EsAEAAAAAAAAAAAAAAAAAAAAAAAAAAA5GwBoAAAAAAAAAAAAAAAAAAAAAAAAAgBfIMAzLMIyrhmH8l9+9njQM4zPDMGYMw/j3hmH4fvd7/+9ez/zu/YmXOnC8VizLkt/vl9frlWl+/eejB0VEDcN446KyREyBJ/OinwFv4nMGAAAAAAAAAAAAAAAAAAAAAAAAAAAAeN0QsAYAAAAAAAAAAAAAAAAAAAAAAAAA4MX6P0q60/L6/ynpf2w2m0ck7Ur67373+/9O0u7vfv8//m474ECGYciyLMViMZ0+fVrT09OKxWLy+XxuPNY0Tfc/y7Lk8/kUiUQUj8cVDofd4PWbhHAucDCPx6NkMimv1/uyh/LGMAxDHo9Hfr9flmW97OE8d6ZpHvq5+k08g5vN5gvdPwAAAAAAAAAAAAAAAAAAAAAAAAAAwJvC4A8zAQAAAAAAAAAAAAAAAAAAAAAAAAB4MQzDGJH0byT9PyT9nyT9byRtSRpoNpt1wzC+I+n/1mw2f2wYxv/vdz9/ahiGR9K6pN7mY/4Q0DAM/lDw94AToG5nGIb8fr/OnTunP/uzP1M6ndbVq1e1tLSkTCYj27bdkKppmvJ4PAqHw4rFYvJ6vVpYWNDy8rLq9fo3fUovhBOQDYVCkqRCofDGnBvwvJimqUQioQsXLujSpUvK5XIve0ivPdM0FYlENDg4KK/Xq7W1NaVSqTcmsuz1ehWLxZTP51Uul1+J82o2m2o2m7Jt+2UP5fdKs9l8sWVyAAAAAAAAAAAAAAAAAAAAAAAAAADw3Hle9gAAAAAAAAAAAAAAAAAAAAAAAAAAAHiD/b8k/V8kRX/3OiEp3Ww2naLusqTh3/08LGlJkn4Xt878bvvtb2y0eO0YhiGfz6eenh4NDg4qEAjovffe08mTJ5VOpyVJlmWp2WzKMAwFAgGFw2E1Gg09ePBA9Xr9lQiRPg+macrv92twcFDDw8MqlUqan5/X9ja3ENDK5/NpcHBQkUjkjbn/XybDMBSNRnXu3Dn98Ic/1Pb2tn77298qn8+rUqm87OE9Myd4fuLECT148EDr6+tqNBov9JiG8XUjmfUJAAAAAAAAAAAAAAAAAAAAAAAAAADw7AhYAwAAAAAAAAAAAAAAAAAAAAAAAADwAhiG8Y8lbTabzS8Mw/hHz3nf/72k//557hOvp2azqWazqXq9rrW1NV29elXz8/OanJzU9PS0YrGYdnZ2VKvVVC6XVSqVtLCwoIcPH2p1dVXFYtGNW7/uoVCfz6exsTGdOXNGlUpFpVJJsVhMqVRKtm2/1LG1zq0TZgVeBsMwFAwGFYlEtL29vSewbJqmPJ6v//y80WjItu3X/rnwIjlz4wTBz58/r1gspuvXr6tSqcg0zZc8wucjEAhoZGRE0Wj0hT9LTdOU3++Xz+dTo9FQuVxWvV7fd3vWJwAAAAAAAAAAAAAAAAAAAAAAAAAAwOMRsAYAAAAAAAAAAAAAAAAAAAAAAAAA4MV4X9KfGobxJ5ICkrok/b8lxQzD8DSbzbqkEUkrv9t+RdKopGXDMDySuiXtdNpxs9n8nyT9T5JkGAb1xt9jzWZT1WpVqVRKs7OzWl9f140bN3Tv3j319fVJknZ3d1Wv11Wv19VoNNRoNNRsNuXxeBQKhWSapqrVqiqVyksNPT9LRNuyLMXjcU1PT6ter+vLL7+U1+uVZVnyeDyqVqvPebTA68kwDIXDYfl8Pq2vr6tWq7m/7+vr09TUlGzb1vLyslKplEqlEpHgxwgGg+rt7ZVt2/roo490584dlcvlN2LeDMNQLBbT4OCgyuWyyuXyC/ueME1T/f39OnLkiEKhkDY2NrSwsKB0Ov1GzCUAAAAAAAAAAAAAAAAAAAAAAAAAAMDLQsAaAAAAAAAAAAAAAAAAAAAAAAAAAIAXoNls/g+S/gdJMgzjH0n6Pzebzf+9YRj/X0n/W0n/i6T/g6S//t1H/tPvXn/6u/f/vkmxEfo6IGoYxr7v1+t1ra+v7wl95vN5FQoFSXok/Gmapvx+vwYHB93o6sbGhjY3N1/b6KrH41FXV5dyuZwWFxe1s7Oj0dFR1ev1lz004JViWZa6urpUr9eVTqfd3/v9fr399tsaHh7W7OysIpGICoWCKpWKGo3GyxvwK855NmcyGX3yySfa3NxUMBiUbdsvLPT8TbIsSz09PW5QulqtvrDvCL/fr+npaQ0NDalYLMrj8cjr9co0zX3X4Ov4fQUAAAAAAAAAAAAAAAAAAAAAAAAAAPBNI2ANAAAAAAAAAAAAAAAAAAAAAAAAAMA36/8q6X8xDOP/LumqpP/5d7//nyX9fwzDmJGUkvTPX9L48JppNBra2NhwY6nNZtP9z4lfOwFQy7Lk8Xg0Ojqq6elplUolpVIpeTweeTxf/9mpYRivVRTUMAxZlqVGo6G5uTltbm5KkkKhkFKp1CtxLgcFyIFvkt/v1/DwsHK5nPL5vPv7YDCoXC6nX//616rVaqrX66rVarJt232WYC/n2WpZlorFonK5nCqVinp6elQsFlWv11/2EJ+J82wdHByUZVlKpVKq1Wov7Hg9PT0Kh8NaWVlRPp9XLpdTuVx+JZ7hAAAAAAAAAAAAAAAAAAAAAAAAAAAArzMC1gAAAAAAAAAAAAAAAAAAAAAAAAAAvGDNZvPXkn79u58fSvp2h23Kkv533+jA8FpwItQHaTQa2tzclGVZewKjhmFoaGhIPp9PqVRKxWJRlmUpHo+rXC5raWlJtm3LNE03Evq6xUINw1AgEJDH41E2m1W9XpdlWTJNU/V63Q17A7/vTNNUNBrV+Pi4Ll26pHK5LOm/3UP37t1ToVDQ4OCgstmsGw8mXt1Zs9mUx+NRIBCQJBWLRQWDQVmWpVwu91o+e0zTlPT1uZmmqXg8ruPHj2thYUGlUknBYFCRSESSVKlUVC6X1Wg0nvm4Pp9PExMTqlarWl5elmmaqlarqtVqr913EgAAAAAAAAAAAAAAAAAAAAAAAAAAwKuGgDUAAAAAAAAAAAAAAAAAAAAAAAAAAMAbwLbtR4Kp0WhUf/Znf6b79+8rlUqp0WjINE3lcjmtr69rZ2dHPT098ng8qtfrLy0U+iyBXI/Ho66uLiWTSS0sLMi2bXm9XgUCgecWVwXeBJZlqa+vT0NDQ9rd3XXvDZ/Pp2AwqNXVVSWTSdm2rVwup3q9Lmlv1J6Y9X/jBJ4HBgaUSqVk27Z6enpUqVRULBZf9vCeiGma6uvr0zvvvKNsNqtCoSCPx6PTp0/rgw8+UCKR0PDwsBqNhmzb1ubmpu7cuaPl5eXn8ozt6+vT5OSkvvrqK+3u7qq/v1/1ev2lfi8BAAAAAAAAAAAAAAAAAAAAAAAAAAC8KQhYAwAAAAAAAAAAAAAAAAAAAAAAAAAAvIEMw1Bvb6/6+/t19+5dVSoVN+5cr9fd181m0w3VvixPGyg1DEPBYFD9/f2Kx+MyDEOmaSoSiciyrJd+XsDLYBiG/H6/otGo/H6/yuWyqtWqotGoJicnVSgUVKvV5PP5JEm9vb0KBAIKhUJKJBJaXFxUtVqVRLx6P4ZhKBwOa3R0VMlkUpubm4rFYurq6tLMzIxs296zrfT0z7lvgs/n0/j4uP7kT/5E3d3d2t7eVqPR0NjYmDKZjJaXlzU7O6vt7W2l02nl83l3HT2rQCCgEydOyOfzKZ/Pu/NVq9X2zGOrZrP5Ss8nAAAAAAAAAAAAAAAAAAAAAAAAAADAq4SANQAAAAAAAAAAAAAAAAAAAAAAAAAAwBvIMAx5PB6trKyoUCjItm15PB5Fo1EFg0EVCgV5vV5JUqVSUb1ed4Ogr0uo1rIsRaNRxWIxVatV2bYtn8+nRCKhSqXyTHHV120uAEnyeDwaGhrSd77zHb333nuKRCLa3NxULpdTOBzWyMiICoWC/viP/1irq6taWlpSLBaTbdtKJpPa3d1VLpd7JA7MfbCXZVmKxWKKRCKq1WoKBAKKxWLKZrPKZDKPbOf3+7WxsaFGo/ESR72/arWqhw8f6t/8m38jr9erbDaro0ePqlar6ec//7kuX76scrmsRqMh27afW0DaMAz19fVpYGBAi4uLyufz8vv9ajQaqlQq+wasAQAAAAAAAAAAAAAAAAAAAAAAAAAAcHgErAEAAAAAAAAAAAAAAAAAAAAAAAAAAN5ApmkqEonItm3V63VJks/nU09Pj0KhkCzLUiAQkGmabpj0deP1ehWJRBQIBLS1taVms6nu7m51dXVpd3dX1WpV0teRVMuyZBiGbNt2A6x4dbReD2LJT8/r9aqrq0uGYejBgwcqFosql8vy+/2anp5WsVjUp59+qqtXryqdTisSiai3t1fValXFYlGrq6t7ngVci85CoZAGBgbU3d2tYrGoRCKhUqmkxcXFPdHlUCikI0eOyLIsbW9vv7LP2WazqZ2dHWUyGRmGod7eXp09e1YPHz7U7du3lcvlXkhMOhgMamRkRI1GQ8vLy/J4PIpEIiqXyyqVSjynAQAAAAAAAAAAAAAAAAAAAAAAAAAAngMC1gAAAAAAAAAAAAAAAAAAAAAAAAAAAK8owzCeOiBrmqbi8bgkqVarqdlsKhQKqa+vT81mU16vVx6PRx6PR8ViUX6/341d27YtwzDk8Xjk9XrVaDRUqVSe56k9FWcums2mDMOQ3+9XIpFQIBBQPp+XZVmKx+Oq1+tKpVKSJI/Ho/HxcZ06dUrhcFgzMzOamZlRNpt1z9Pn88nr9arZbKpSqbjB75fJiW5LcoPbXq9XXq/XfW0YhhqNhnt9HaZpyu/3y+v1qlqtqlwu79m33+9XLBZTrVZTJpN5ZaO6rxPDMGSa5kuPo5fLZT148ECLi4uSpEajIY/Ho5GREQWDQS0uLuo3v/mNNjY25PF4NDk5qWQyqY2NDeVyOZXLZaLBj2Gapnp6etTb26tQKKRarebGqztFl2u1mtLpdMfnyjcZbneOZRjGI8dtNptqNpuqVqvyeDwaGBhQPB7X3bt3lU6nX8iaMAxD8Xhcw8PDyufzsm1byWRS9XpdxWJR1Wr1wM++iKA2AAAAAAAAAAAAAAAAAAAAAAAAAADAm4iANQAAAAAAAAAAAAAAAAAAAAAAAAAAwBvIMAwFAgFls1k3QNrV1aVEIqGdnR032txoNNTX16ejR48qn89rdnZW+XxegUBAZ8+e1fHjx3Xnzh3dunVLpVLpGz0HJ7Btmqa6u7vl9/tVLBbdGGwgEFB3d7fq9bry+bxisZj6+vq0tramQqEgn8+nkydP6s/+7M909uxZ+Xw+Xb9+XR999JFu3rypra0thcNhnTlzRkNDQ1pdXdW9e/dUKBQUCoVUrVaVy+W+8VBqMBjU8PCwJicnVS6Xde/ePeVyOU1OTioej8vv9ysajaparWpubk6Li4sqFotujLu3t1dHjx7VyMiIHjx4oJs3byqfz7v77+/v1/nz57W0tKQHDx6oWCy+MtHiFx3xfREMw9D4+LhGR0c1Nzen9fX1lxZBdyLsTnDeMAxFo1Elk0lFo1FdvXpVu7u7qtfrikQiOnLkiJLJpB4+fKh0Oq1Go6FwOKxEIqFSqaRMJnNgSPj3kd/v19DQkCYnJ1Wr1bSwsKDV1VXlcrlH7qN6va6dnR1lMplXLrhsGMYjMWtJsixLw8PDsm1bq6urz3T9nbB7d3e3urq6VK1WlUqlVKlUZBiG+vv7FY1GlU6n1dPTo1KppO3tbTdoDQAAAAAAAAAAAAAAAAAAAAAAAAAAgGdHwBoAAAAAAAAAAAAAAAAAAAAAAAAAAOAN5IRrs9msisWiJKm7u1uhUEibm5uKRqPy+XwqFosKhUIaGxvTzs6OFhYW5PF4NDg4qB//+MduXPThw4ffaMDaNE1NT08rkUjIsiz19fUpHo9rYWFBN27cUCqVcgPWTux0bGxMtVpNW1tbajQaOn36tP7wD/9QjUZDf/VXf6WBgQEdO3ZMb731lra3t1UoFHT69Gl9+OGHbhzb6/VqdHRUJ06c0Pz8vO7evatyufyNnXcoFNK5c+cUjUY1MDCggYEBZbNZRSIRjY+Pa3h4WEeOHFEul9P9+/fl8Xz958KWZSkej+vYsWPy+/3KZrOSpLNnzyqbzWp2dtYN0XZ1damrq0u9vb1aWVlRqVR6rgHrTlHcw3zG+deyLNm2/UoHbC3LcsfprNVz586pVCq568+ZA9M01d/fr+HhYeXzea2vryubzX4j52eapnp6etwY+vz8vBu3DgQCGhoa0vb2tubn51UqlRSJRDQ9Pe2G64vFomq12p5zcQLXkUhE+Xxe29vbKhaLhzqfYDAon8+ncrmsarX6zOvOMAx5vV5JUqPRUKPReKb9HUZXV5eGh4dlmqZmZmY0MzOjdDqtZrMpn88nSe6cVSqVlxo0N01THo9HzWZTjUbDvUbBYFCJRELxeFzpdFobGxuq1WqSpGg0qunpaa2urmpjY2PPWn4Szr08MjKin/zkJzJNUw8fPtTdu3e1vr4u27bV19en4eFhNZtN3blzR5ubm9rd3d2z5vbzPJ9ZAAAAAAAAAAAAAAAAAAAAAAAAAAAAbzIC1gAAAAAAAAAAAAAAAAAAAAAAAAAAAK8oJ+r7NPx+v3p7e7W5uekGigOBgILBoPtvtVpVPp93j9NoNFSpVGSapnw+n3w+ny5duqTNzc1vPMBqmqampqY0Pj6ubDar1dVVmaapaDSqSCSidDqtcDiseDyuZrOpZDKpeDyua9euKZ/PKxQK6eLFi5qbm9P9+/e1ubmpsbExJZNJlctllctl2batcDgswzC0s7Ojzc1NFQoFxeNxhcNhSfpGz9swDI2NjSkYDOrOnTuSpAsXLsjr9WpiYkLhcFiVSkW2bSudTiudTqter8swDA0ODurixYsaHR3VJ598osXFRXV3d+uP//iPlU6ntbi4qGq1Ko/Ho0AgoMXFRY2Pj6u3t1e5XO65RLo9Ho9isZi6urpUqVS0s7OjSqWiZrMpv9+veDyuUCikXC6nVCr1SGw4GAzq5MmTOn78uDKZjC5fvqzt7e3nHqp1wtNPs1+Px6P+/n5duHBBg4OD2tjY0JdffqmVlRVNTU1pcnJSy8vLbsRakiYmJvRP/+k/VV9fn+7du6df//rXKhQK30jA2u/3a2RkROPj47p9+7Y2NjbcNeP3+xWLxfTpp5+qVCrpyJEj7vry+Xyq1+t74sUej0cjIyP63ve+p+9+97vq6urS6uqqfvnLX+qjjz5SoVDYdxyGYSiRSOjixYuSpGvXrj3ztbUsS9PT03r33XclSTdu3NDs7Kzy+fwLixsHg0FNT08rFotpfn5et2/f1u7urkzT1PDwsN5++20VCgV99tlnSqfTsm3bDccbhqFwOKyenh7l83lls1n3+eLxeBQMBhUMBlWv15XP51WtVmWaphvodsLjPp9PsVhMtm1rd3dXzWZTQ0NDisViWlxcVD6fd6/h0NCQhoaGVK1WtbS0pJ2dHYVCIY2NjbnPlJmZGW1ubkr6+rmbTCY1ODiojz/+WLlc7qnn0lljU1NTevvtt7W0tKRareYG7p373ePxaH5+XgsLC0qlUocKmxOvBgAAAAAAAAAAAAAAAAAAAAAAAAAAODwC1gAAAAAAAAAAAAAAAAAAAAAAAAAAAG8YwzAUjUYVDAa1vb3thlAty1IwGNTIyIiy2azW19dVqVQUiUTUaDS0u7vrbpvP53X9+nXdv39f5XLZjbB+U3w+n7q6uhSNRrW0tKT5+XnV63X19fUpEAjINE35/X6Fw2F3vEtLS9re3pYkJRIJRSIR/fa3v9XW1pa8Xq9M01Qul9Pm5qYymYwajYaKxaJWV1e1s7Pjxn0ty1Kz2ZRpmo9Ell+kYDCoWCymhw8famdnR7ZtK5vNqtlsanBwUOl0WvPz82o2m27Etl6vq6enR9PT0+rv79e1a9c0NzenSqWiTCYjv9+vZrOper3uhqQ9Ho9WVlY0Ojqqo0ePanNz0w1NPw3DMBQKhXT27FlNTU3JsixJXweFZ2Zm5PP5NDU1pZGREXV3d2thYUGff/65isXins+/9957+vM//3P19fVpe3tbtm3rF7/4xXO5BoZhKBAIaHx8XD09PVpYWNDq6qqkryPPXq9XxWJRjUZDXq9Xvb29Mk1Tu7u7bpjZNE0NDAzoH//jf6yf/vSn8ng8WlpaUiAQ0D/8wz8olUrp6NGjMk1Tly5d0srKiizL0sWLF/Xuu+/q/v37qtVqCgQC8nq9qtVqz3xeB7EsSz09PZqcnFQgENDS0pI75x6PRz09Pe55f/jhhxoeHtbPfvYz2bYt0zRVLBb3BJYnJib04Ycf6vvf/75GRkbk9XrdOPL169fdfTvHdQLX5XJZ3d3dOnHihCYmJrS6uronjP00TNPU0aNH9S/+xb/Q+fPnlc/nFYvFVCwWNTc399zn1rIsxWIxjY6Oanp6WvV6XUtLS25Aur+/X3/wB3+g999/X5cvX9a1a9f2nF84HNbU1JS+853v6OjRo7p3757+9m//Vpubm4pGo5qcnFQikVAsFlMul9Pdu3e1s7OjwcFBDQ8PK5PJ6M6dO4pGozp69KjGxsa0u7urX/3qV4rFYvqDP/gDNRoN1et1PXz4UJLU19enSCQiy7I0MDCgcrmser2u/v5+9fX1qVKpKBqNqlAoqNFoyDRNBQIBTU9Pq1KpaGVlxQ1OOw57zUzTVCQS0blz5/RHf/RH7v1fKpW0uLionp4eVatV9fX16datW7p//75SqZRqtdqh4tUErAEAAAAAAAAAAAAAAAAAAAAAAAAAAA6PgDUAAAAAAAAAAAAAAAAAAAAAAAAAAMArrDUeelgej0eJREK1Wk3pdFq2bSsUCqmrq0u9vb0KBoOybduNNIdCIZmmqVKp5MZrm82mSqWS4vG4ZmZmvtGAtWEYisfjikQiSqfTWlhYUCaTUSKRcOPNzn/BYFA+n0+ZTEbz8/OqVqsKhULq7+/X7u6u0um0BgcHdeTIEQ0ODqrZbGpnZ0fFYlGWZbnnvbOzo0KhIK/Xq2Aw+I2dq8OyLEWjUZXLZW1sbMjv96u7u1upVErxeFw+n08bGxtaXl6Wx+PR+fPndfz4cQ0PD6tQKKirq0s7Ozu6efOm8vm8wuGwIpGIcrmcVldX3RCtz+dTuVxWNpvV5uamG87NZrNPdY0ty1JfX5/efvttDQ8Pa3Z2VsViUSMjIzp69Kjq9boikYii0ai7f7/fv2ddBwIBHT9+XD/96U81Ojqqe/fuuaFdr9f7XALWwWBQY2NjGh0dVXd3twKBgFKplCKRiI4dO6ZAIKC7d+8qnU5reHhYJ0+eVCaT0a1bt1QoFNwo88WLF/X+++8rmUzqxo0bmp+f1/DwsAYHB+XxeLS5ualYLKYPPvhAn332mQqFgkZHR7W7u6urV68qm83Ksix5PC/2z7xN01RXV5dGRkYUi8WUSqW0vr7u3t/RaFTj4+MyDEOnT5/WBx98oJs3b6pcLmtyclLValXValXNZlMej0f9/f06ceKEurq6dOvWLX322WcKBoM6deqUksmk+vr6tL6+rkAg4Eaee3p6dOXKFS0vL2t4eFjxeFwej0cbGxsqlUrPFEzv7e3VH/zBH+jEiROamZnRwsKCUqmUenp6tLOzo3Q6/VzWjWmaCgaD6u3tVTKZVHd3t3w+n3Z2drSzs6NGoyGfz6e+vj6NjIyoUqloa2tL1WpVhmHI6/VqYGBA77zzjn7wgx/o/PnzCofDSiQSun//vjwej4aGhhQKhWTbtrq6uhSPx1WpVNx9xuNxlctlNZtNJZNJRaNR9ff3S/o6jH38+HF1d3fr7t278vl8CgQCikajCoVCymazajab6unpUTKZlCR1d3erXC67z4JUKuV+F/T19WlqakobGxvK5XJ75uKw18swDAWDQU1NTen73/++/H6/rl27puHhYYXDYVmWpVKppEqlonK57D7fDxOvBgAAAAAAAAAAAAAAAAAAAAAAAAAAwJMjYA0AAAAAAAAAAAAAAAAAAAAAAAAAAPCac2LATvzT7/crkUgok8moVCrJ5/NpcnJSZ86c0fDwsPL5vKrVqh48eCDDMBQIBGTbtur1uru/QCCgZDKpeDyu+/fvf6NhUa/Xq/7+fnV1dWlxcVGpVEr1el2NRkP1el2maSoSiSiRSCgQCGhra0tLS0vK5XJuPLWrq8t97ff7ZZqmu38nbBsOhxWPxxUMBtVoNGSapnp7e9Xb2yvLsmTbtgzDkG3b7mefJih+2HP2er1Kp9Oq1WoaGBhQNBpVsVjUwMCAGyPP5XJaXFxUMBhUJpNRvV6Xx+NRrVbT7Oysdnd3FQqFNDU1pdOnTyudTmt9fd0NETvHKBaLWl9f18jIiBsffpqAbCwW0w9+8AO98847+uKLL3T9+nXVajX5fD6dOXNGkpROp7W1taVQKOQe31lrThj6woULOnnypFZXV/XRRx+pp6fHDTDncjnVajX336eZ23g8rq6uLm1sbLjXub+/X8lkUj09PYpGoyoUCopGozp69Kh6e3uVzWbdNRAKhTQ+Pq4TJ07I5/Npfn5en376qTKZjMbHxzU9Pa1Go6GvvvpKoVBIZ86c0blz57S4uKhms6mrV69qbm5OHo9H9Xr9hd5PhmEoHA6rv79fvb29ajQa2tzcVKFQcOejq6tL3d3dMk1TZ86ckd/v1507dyRJ8XhcmUxG5XLZfX3kyBEFg0HdunVLy8vLyufzbkR5aGjIDaYPDQ1pcHBQlmUpHA4rFoupVCqpu7tbkrS7u6vNzc2niqU7wuGwTpw4oZGREV2+fFl///d/v+c6lMtllctl93yflvMMTCQSMgxD1WpVlUpFpVLJvYckyePxyOPxuOt8fn5epVJJwWBQIyMjOnPmjI4eParBwUGFQiHt7u7Ktm319fXJtm3Ztq3l5WWFQiFNTEyou7tbAwMD2tzcVK1Wk9frVU9Pj/L5vPL5vIrFoqrVqtbW1hQKhRSLxTQ7O6v5+Xl5vV4NDg4qHo9ra2tLuVxOoVBIHo9H8XhcjUZDpVJJ9Xpd0WhU2WxWhULBXTOjo6OKxWKam5tTvV6XYRhPvFadY01NTcm2bf393/+9dnd31d/fr76+PhWLRS0sLCgejyuXy2l3d/eF3xMAAAAAAAAAAAAAAAAAAAAAAAAAAAC/zwhYAwAAAAAAAAAAAAAAAAAAAAAAAAAAvKIeF0t24szhcFj1el3FYlH1el2BQEDhcNgNPw8NDen999/X+fPn1dXVJUmqVCrKZrNqNBryeDxu1Nnr9SoajWpwcFCDg4Mql8sKBoNPFTJ9WqFQSMPDw/J4PNrd3XVDsZLc85ucnNSxY8cUDAaVTqfdCGsgEFAsFlMsFpNt2/L5fEqlUuru7tbIyIgbfO3r61MymdT09LT8fr/W19c1Pj6uoaEhDQ0NqVAofKNRVb/fL4/Ho2w2K8uylEwmFQ6HVavVFI1Gtb29rXq9rnq9rkwmowcPHmhxcVF+v19DQ0Pq6urS1taWbNtWJBJxI7Zra2vK5XJu9DsQCCifz6tSqWh3d1e5XE49PT0Kh8PK5/PuOjisWCym0dFRZTIZXbt2TTs7O26kOR6Pq16va25uTsViUT09PapUKtre3nZD1F6vV4lEQolEQru7u8pms254ORgM6uTJk1pYWFAqlXqqILETNHdivZubm0omk/L5fBoeHpb0dWA7HA6rt7dX0WhUsVhM5XJZmUxG1WpVHo9HiURCg4ODajQaevjwoQKBgJrNpnw+nyQpmUzqwYMHmp+fl2VZGhwcVH9/v2q1morFolZXV5VOp+XxeFQul594np9EIBBQIpFQT0+PPB6PqtWqstmse+9Eo1F5PB4VCgVZlqVQKKSrV6/q/v37CofD8nq9Wl9fV7Vald/v1+joqPr6+rS7u6u7d++619iZp93dXZmmqZGRESUSCWWzWUlSsViUZVnq7u5Wo9GQbdtaX193nztPw7IsDQ8Pa2RkRLOzs7p+/bpu3rypaDSqkydPKplMKhqNyrKsZ5pDj8ejnp4eJZNJSdL29rZs21ZXV5fK5bLS6bQb+PZ6vfL5fEqn09rc3NT6+ro7H5OTk6pUKrp586a8Xq9qtZpKpZK2t7cVCATk8/k0OzurdDqtqakphf7/7N1ZcxxXgp/9f2bt+4odhY0ACIC7RLUoUWqpexbH2DPhHl/Y4Zv5XL72he2wJ2LssT3dnu5+u9WUmqIkkqK4gCT2fat9X7Kq3gsFcghSUnMVSen5RSCmiarKPHny5Km5gR6/X263234+TdNUIBBQp9NRLpdTOp3W+Pi4CoWCVldX5ff71W63lU6n1e125fV6NTQ0JMuy7Hh6MBhUNBpVu922o9ahUEhut1vpdFrtdltut1vJZFL9/f3qdrvqdDr2fWs0Go/Mz+F308P74+EenEwm5fV6dfv2bX3xxRcql8t2VN3lcqlcLmtkZET5fN4OxX/T8b4NsWsAAAAAAAAAAAAAAAAAAAAAAAAAAIDHR8AaAAAAAAAAAAAAAAAAAAAAAAAAAADgFfSn4tWS5Ha7NTk5qZMnT2p/f183btywY7zhcFg7OzsyTVN9fX1KJBJ2qHp3d1f379/X3t6eXC6XTNO0o7eSNDg4qNHRUZmmKZ/Pp+HhYaXTaVUqlRceDnU4HBoZGdHc3Jwsy1I+n1er1bIjsW63W6lUSvF4XNFoVI1GQx6PRz09PTJNU4lEQn6/Xw6HQ9FoVGNjY2o2mzp27JgCgYC63a4mJiYUiUTk9XrV09Mjp9Opubk5DQ4OyuFw2NHrw3D24b0wDENOp1OGYajdbj/XCLFpmmq1WqrX63bAu7+/X/v7+5Kkdrutbrcrj8ejcDhsh6i73a5cLpcMw1Cn05HH41EkErHDtoVCQZLU29urnp4eVSoV1et1dbtdVSoVNZtN+f1+e86e9JoO19P29rZWV1fVbrftWLbL5VKpVFI6nVYgEJDH41GxWFQ+n1en07ED7JFIRAcHB/rlL38p0zQVDoflcDhUq9XUbDaVz+dVKBTs6PWTcDgc8nq9arVayufzsixLkUhE0WhU4XBYKysr6uvrk9/vl8fjsaPvtVpN5XJZrVZLfr9ffX198nq9WlhY0Pb2to4fP66enh6VSiUFAgE1Gg3t7++rUqkoEonI4XCoWq2q0+nYayoYDKpcLqtSqTzVtTwOl8ulaDSqYDCoZrOpcrmsSCSicrksv9+vRCJh3/vDcWxtben3v/+99vf3deLECblcLjUaDTtiPDAwoE6no+3tbWUyGXW7XcViMfs5rFar9nO3t7endDqt0dFRO5ZdKpVkWZZM01Q+n1ej0XjqfSQQCGhsbEz1el23bt3SxsaGut2uksmkIpGIisWicrmcLMt6pnk0TVOdTkfZbFbFYlHValW9vb3y+XwqlUrKZrNqNpv2Wg+Hw6pWq9ra2lKpVFIymdTU1JTq9brm5+fV6XQUi8UUj8fV6XTs/XRvb0/ZbFbdblfxeFzBYFDFYlEbGxsql8uanp5WJBLR/Py8VlZW7L19d3dXuVxOx44dUzQalWVZqtfrisVi9rquVqt2qL23t1d7e3sqlUpqt9uKRCL2OjgMXCeTSTkcDnU6HSUSCY2NjalWq9kB62/6Tnr4d6Zpyu/3Kx6Pq1QqaWVlRbVaTa1WS51Ox36OD6/jcJ89DFgDAAAAAAAAAAAAAAAAAAAAAAAAAADg+SNgDQAAAAAAAAAAAAAAAAAAAAAAAAAA8JryeDyanZ3VL37xC92/f9+Op4ZCIYXDYS0uLtrR0KtXr6rdbisYDOr69eu6d++eCoWCQqGQGo2GotGozpw5YwehC4WCbt26pfHxcR0/flz5fF5ra2uqVqvPNdz8MKfTqePHj2tubk43b95UvV5Xp9NRIBBQJBJRIpFQJBKRZVm6e/euAoGAenp69Oabbyqfz6vb7Wpzc1NbW1s6e/as3nzzTbXbbTkcDt29e1c+n0/T09MaGhrS9va27t27p2QyKZ/Pp06no0wmo2AwqEajoXq9LsMw7JC33++XJFWrVdXr9ed63fV6XZZlqdVqqbe3V1NTU0okElpYWFAgEJDL5VIgEFAsFlN/f7/y+bxKpZId0Y3FYpqcnFRfX596e3sVCoVkWZa8Xq/Gx8eVSCTUarXUaDSUSCQUDAZlWZYdV/Z4PDJN84nHXSwWde/ePW1tbalWq9mR7d7eXlUqFXvN9Pb2yrIsO9wrfR2XDoVCSiQS2tzc1O3bt9VqtRSNRjUyMiKXy6Vbt25pZ2fnqQK3DofDnrtcLqdisahQKKSBgQHF43HV63WVy2WdOnVKQ0ND2t3dValUksfjUaVSsdd6MBhUIpFQp9PRysqKJMnr9Soej8vr9crhcGhra0u7u7tyOByam5tTLBbT8vKyGo2G4vG4ksmkvF6v7ty5o0wm80KCvYfx6nA4rHq9rlKpJK/XK6fz6z8pj8VicjqdOjg4ULFYVKlU0r179/Tll19qfn5ezWZTTqdToVDIjk8PDg4qHo8rnU6rUCjYceO5uTmdPXtWAwMD2tnZ0fj4uO7evavd3V0Fg0GlUilFo1GVy2UtLi4qkUgoFArZz7NhGE8csTZNU4ODg4rFYlpcXNTS0pI6nY5SqZRmZ2cVDod17949ZTIZO7r8uA5DzIdjsixLuVxODodDzWZT3W5X0WhUXq/XDpUfPpO9vb2KxWJKp9Pa399Xt9vV2NiYIpGIlpaWdHBwoHg8rlAopFarpb29Pe3t7Wlzc1O7u7uq1WqKRCLq6+uT0+nU9va2Dg4OFA6HlUgkVCgUtLi4qHK5rJGREXm9Xh0cHMjv92t0dFTT09NyOBzK5XJKJpMql8tKp9NqNptKJpMaHByUaZra399XPp9XKBRSLBZTtVpVOBxWX1+fHZuvVCoKBAIKBoPy+/3qdrvfeq8e/p1hGHI6nXbQ+8Fg/OFzWK1WVS6X1d/fL5/Pp8XFRXtNPMm9etoAOgAAAAAAAAAAAAAAAAAAAAAAAAAAwI8RAWsAAAAAAAAAAAAAAAAAAAAAAAAAAIBX0GFQ9bteP3xPOBzWxMSEBgYGtL+/r/7+fjmdTuVyOVUqFS0sLGhjY0PpdFoul0sbGxva399Xs9lUqVTS5uam+vr6NDAwIMMwtLCwoPn5eTuCOz09rdnZWbndbq2srNgh2xfB4XCop6dHAwMD2t3dVTgcls/nU19fn6LRqFqtllZXV7W1taXt7W319vbqzTffVH9/v4LBoG7evKn19XWZpimv16vR0VE1Gg3Nz89rZWXFjr+2221tbGyo1WopmUzK4/Eom80qEAhobm5OlmWp2WzK5/MpGo0qFovJNE1ls1kVCgVZlmXHXZ+HWq0m6ev72t/fr76+Pq2srOjmzZuamJhQX1+fZmdnFYvF1Gg0tLu7q0qlItM0lclkNDY2plOnTsmyLNVqNS0vL6tYLGp0dFTxeFzFYlFXr15Vf3+/Tpw4oUqloo2NDQ0NDanRaKjdbj/VPS2VSlpcXFSlUlGn05FpmhoaGlJ/f782Nja0sbEhp9OpRCKher2ufD6vVqsll8ulUCikvr4+xWIx7e/vq1Ao2OHwTqdjB8Wfdq15PB719PTY0dx2u20Hvcvlsra3t+3Y8NDQkO7evat8Pq/BwUE1m03V63V1u115vV4FAgG1221ls1mVy2V1u11NTk6qt7dXu7u7+vLLL5XP55VMJvXWW2/JNE07JO9yuTQ4OCiHw6FyuaxGoyGfz6daraZqtfrEseWHuVwu+f1+xWIxRSIRVSoVe4339PTI5/Opp6dH29vb2tjYULFYtGPc29vbdkRZkgqFgjwej8bHx+21n0wmlclkZBiGksmkJiYmNDExoVAopEAgoL6+PjUaDW1sbKhcLuvEiRMaHR2Vw+FQoVBQsVi0x3b43DwNt9ut2dlZtdttbW5uyrIsDQ8P6+TJkxoZGZHT6VQ6nVa5XH7m/anT6cjv9yuRSCifz6vRaKi3t1fBYFDZbFaxWEw9PT3yer3q6elRMBjU5uamarWaXC6XhoeHZRiGcrmcPB6PvT9vbGwok8loZ2fHvheH6zIcDqtYLGpjY0ONRkOxWEwOh0N37tzR6uqqOp2OksmkIpGI4vG4UqmUJicnNTAwoGw2q1QqpUAgoIWFBeVyORmGoaGhIbndbi0tLenu3bsqlUr281mr1TQ4OKh2u6179+5pfX3djmZvbGxoc3NT1WrVvl+Pc99M05TP55Pf79fu7q4di9/Z2dH29rYqlYra7bZ6e3tlGIb29vbUarXszz+8nz54TqLVAAAAAAAAAAAAAAAAAAAAAAAAAAAAT4eANQAAAAAAAAAAAAAAAAAAAAAAAAAAwCvqu+LI3W5X9Xpd9+7d0+3btzU2NqaZmRnl83mNj4/r4OBABwcHajQa6na7ajQaun79urrdrtrtth0DrdfrWl1dVaFQUCAQULVaVS6XU7PZVLfb1ZUrV7S/v6/JyUmlUik74PuiAtaHx/X5fJqbm9Pi4qLK5bJ6enpUqVR08+ZN7ezsqFar2UHhdDqtWCymfD6vvb09Owj8ySef6IsvvrCjzu12W4Zh6ODgQN1u144k7+zs2EHwyclJORwOSZLX67Vj0pZlaXFxUfv7+2q1Wkeirs8rYn3I6/VqaWlJv/vd7+zI9sjIiE6ePKl0Oq3r16/b0WjDMHT//n21Wi0NDAyoVqtpZWVFe3t7SiQSCgQC8nq9unr1qlZXV3Xy5Em9++67sixLS0tLMgxDN2/eVD6fl2VZTzzWVqulbDZr/9vpdOr48ePqdDq6efOm9vb2ND4+rr6+Pm1sbKjT6SgajdpR8FgsJqfTqWg0qlAopGg0qsHBQXW7Xa2srDx13NkwDHk8HkUiEWUyGbVaLZmmqUQioaGhIf3ud7/T7u6uhoaGNDg4qIODA83Pz8uyLPX09KhQKMjr9SoYDMrlctnBba/Xq3w+r83NTdXrdSWTSe3t7Wl7e1vtdltOp1OWZSkQCGhsbEzb29u6cuWK+vr6lEqldOLECSWTSe3v72tra8u+v0/7PBmGoZ6eHh07dkzJZFI7Ozva2tpSqVSSaZpKp9Pa3t6WZVk6ODhQPp9Xp9NRt9vV1taWDMOwz20Yhra2trS+vq5UKiWv16tCoSC3262+vj5NTU0pGo2qt7dXBwcH2tvb08WLF+V0OnX16lWtr69LkkZGRhQMBvXpp5/q2rVrKhQKarVaikajCgQCcrvdTxWy9nq9mpyc1NLSkmq1mgKBgE6ePCmfz6dyuSyfz6disWjveU/q4c/4fD5NTk6qVCqp0WhoZmZGoVBITqdT/f39sixLmUxGlmXJ5XLJNE2122253W75fD65XC5FIhGNj4/rX//rfy3DMLS6uiqXy6X19XXlcjl7XcbjcRmGoeXlZa2trckwDLndbu3u7urGjRvK5XLy+XxyOBxKJpN644035Ha7tbOzY8+t1+vVV199pfX1dVUqFYXDYcXjca2vr+v27dva2tqSw+GQw+FQLBZTIpHQ9va2vvrqKy0sLKjVaqlarSqdTuuzzz7T5uamms3mE8+j0+m0I9uzs7MKBoNaW1tTNpuVZVkyTVOxWEy1Wk2FQuHI99E33Q/C1QAAAAAAAAAAAAAAAAAAAAAAAAAAAM+GgDUAAAAAAAAAAAAAAAAAAAAAAAAAAMBrqtlsanFxUf/wD/+gDz/8UE6nUwMDA+p2u3Y49sH4Z6vV+sbj1Ov1IxHnBz9TrVY1Pz+v1dVV+f1+lUqlpwodPy7TNNVqtbS1taVyuaxoNKpEIqFSqaT9/X07HPzg+NbX17WxsfFI6LRaraparR75XbfbtaOsh9d6+DmXyyW3261AICCn06nJyUmFQiFtbGzYIe1Dzzta/aDV1VWtrKzY17S6uqrr168rGo1qfn5ea2trdti52+0ql8spn8/ryy+/tOPEhmGoXq/rf/7P/ylJqlQq6na7+vjjj5XP5+X1elUqlZTP57W6umqHjZ+Vw+GQZVm6fPmylpeX1Wg05HK5FAwG1d/fr2azqVAopHA4rHQ6rbW1NXm9Xh0/flwOh0OBQEChUEi/+93vlMvlnile22q1lMlkVKlUJH0dQJ6ZmZFlWbp+/bqq1aoSiYQymYx+9atfaWlpST09PXI4HBoeHlaz2VSpVFK9XlepVNLg4KDOnj2rtbU1uVwu9fT06ODgwI6aS9L+/r7+x//4H/L7/arX68rlcqrVavL7/RoZGdHQ0JDa7bby+bzS6bRKpdIzz3s8Htfo6KgODg60tramXC5nx9m3traUyWQkfb0GHjzXg2v/8N+FQkG//e1vFYvF7DXm8Xg0PT2tqakp1Wo13b59W5999pk8Ho9cLpfK5bIuX75sX2etVtOlS5f0y1/+Utls1o6Rnzt3TlNTU6rX69rY2FCtVnvs+3v4vHW7XaVSKaVSKbndbvn9fhUKBfl8PnvNt9vtJ57DbxpHLpdTqVTS8ePH7YD34Z6yv7+vpaUlZbNZjY2NqdvtKpFIKBgMqtPpqFQq6a233rLHOzs7q1//+tdqtVra2dnRzs6OvQ85HA4lEgnlcjktLi4qnU7L7/draWlJnU5He3t7arfbqtVqun//vvr7+1UqlXTz5k2tra3J5/NpeHhY9Xpda2tr9ppqtVq6f/++8vm8MpmMms2mnE6nNjY29Omnn6rVaunevXvKZrNqtVoyDEP37t1TuVzWysqK/dx81/14eO4O15TX69XU1JRcLpc+++wzraysqNvtyul0yuv1Kh6P23vq4ffOn7ofj/MaAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmXwB5oAAAAAAAAAAAAAAAAAAAAAAAAAALy+DMPgDwV/oEzTlGmaf/J9hmHI5XIpEAjIMAyZpmmHaL8rNP1wqPrh1w59n3+LapqmBgYG9Itf/EKWZenKlSvK5/MqlUqq1WpqNBpPFad9XMFgUGfPntUHH3wg0zT12Wef6datW9rd3X2h5/1TDMOQw+GQYRiyLOuZ78mDMeDnzTRNeTweWZalVqslp9Op0dFR/fznP9fo6KiazaZ2dnZ08+ZN3bt3T/V6XYODgzp//rzi8bj29vZ0+/ZtLS8vf2tw/UkcXqvD4dDo6Kj+w3/4D9rb29N//a//Va1WS6lUSoZhaGNjQ5ZlKRgM6syZM5qbm5MkLS4uamFhQW63W2fPntXs7KxM01Q2m9XCwoKuXbum/f39R875TXP7YKj34Xj0s/D5fHK73Wo0Gmo0Gs/1vrrdbg0ODmpqakqhUEibm5taXFxUoVCQ0+mU2+1Wq9VSvV6312kwGJRlWapWq3YwOxwO69SpUxoeHtbu7q5u3bplh7Yfh2EYCgQCunjxov7iL/7CDlWXSiVdu3bNDoT/5je/0crKynNZO5IUCAQ0PDyst956S9PT07p27Zq++OILZbNZNZtNe886f/68BgcHdf36dc3Pz2toaEjvv/++vF6vLMtSKpXS3bt3dffuXd24cUPlctk+h8/n0+TkpCzL0vb2torFor1WDkPkh3Pg8XgUDAbVbDZVq9WOvCb9y7rqdrsyTdNei4c/h98RDodD3W73G/cT0zTV6XQe6/vh8JyHDsPux44dUygU0tramnZ2dhQOh9Xf3698Pq94PK6LFy/q0qVLWlxctD9/uL+1Wi01Go1v/P46vI5njb7j6XW7XeNPvwsAAAAAAAAAAAAAAAAAAAAAAAAAALxKCFgDAAAAAAAAAAAAAAAAAAAAAAAAAPAaI2D9w3UYLP4xcblcOnHihD744APduXNHV65cUblcfq6x3+8698DAgN5++23NzMzo/v37+s1vfqNsNvu9Rrx/aAzDkNfrVU9Pj0KhkOr1ujKZjMrlsh2oNU1TbrdbLpdLzWZTzWbzuc354TPk9Xp1/PhxnThxQp988olWV1ePvP5gRNflcsnj8UiSGo2GWq2WHWZOJBLyer3K5/PKZDLPPRj9KjoMHkuyg8pPc81ut1tOp1OdTkfNZvOJI8SmaSoWi+n48eMaGBhQPp/X0tKScrmcpqamdOrUKd28eVN37949Eoh+FqZpKh6P6/z584rFYrp69apWV1ftQLZhGPL5fOrp6VEikdDe3p52dnbkdDrl9/vl8Xg0MzOjP/uzP9Pi4qI++ugjbWxsqN1u2583TVOmadph5m/b7572++DhYz14nAfX/Z/63HeN48HjOJ1O+/ur3W7L6XRqcHBQJ0+e1OjoqFKplLxer65du6ZCoaBut6t2u616va6DgwPt7e0pm82qXq8/MoYH5wgvBwFrAAAAAAAAAAAAAAAAAAAAAAAAAABeP86XPQAAAAAAAAAAAAAAAAAAAAAAAAAAAABAkjwej4aHh2UYhrLZrFqt1vcSr34wjDs6Oqp8Pq/FxUUVi0VCqc+o2+2qVqtpfX39W9/T6XRUr9dVr9dfyPmlr0PU9+7d08LCgqrV6iOvP/jvZrNpr71DlmWpUCjYwd0fk8No9bM6jJM/yziy2aw+++wzmaapdrutTqcjwzC0tbUlj8cjy7LkdDplGMZzu0+RSEShUEj5fF6FQkGWZdnH7na7qlar2tjY0Obmptrtth1kbrVaCgaDCoVCkqTd3V0dHBwcmcvD9x4Grb/Lt0WtH45Qd7vd74xdf9NxHvzMN0WtHzd03e12ZVmWHac/jFhvbW2pVqvJsiz19/erUqmoUCjYc5rP51WpVFQul1Wv14/MMQAAAAAAAAAAAAAAAAAAAAAAAAAAAJ4NAWsAAAAAAAAAAAAAAAAAAAAAAAAAAIBXzHfFR3/IXC6Xksmk8vm8MpnMC4uYPhx9jUajGh8fVzQaVaFQUL1eV6vVeu7nxcvT6XRUq9Ue+/3fFvnFy3UYSH74d7u7u0qn05JkR6SfB8MwFIvF5PV6tb29rXq9/o3R88Mo9cMxZ8MwFAqFlE6ntba29twj7Q+f7+FzP8vxvu3f33XchyPYh/+72WwqnU5rc3NTq6urWlhY0LVr19RsNtXpdOx71ul01O12v/P+8RwCAAAAAAAAAAAAAAAAAAAAAAAAAAA8GQLWAAAAAAAAAAAAAAAAAAAAAAAAAAAAeCUEAgElk0ndu3dP5XJZ7Xb7yOsPh1OfNmT64OeCwaCmp6cVjUa1sbGhfD6veDwuy7J+tCFx4HXT7XZfSHTe4XAomUyqXq8rk8mo0Wh85/sNw7D3F6fTqZ6eHg0ODqpUKqlarT7WOR88xqvouyLW3zbuw9/H43E5HA7t7e2pWq3a4epvC3EDAAAAAAAAAAAAAAAAAAAAAAAAAADg2ZkvewAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4yjTNH1082TRNDQ0NKZFIaG9vT+VyWZ1O58h7DkOnDwdPn5bT6dT09LSOHTsmy7K0u7urWq0m0zRlWdYj5wfw49HtduXxeNTT06N8Pq9cLmdHsr9rfzYMQ6ZpKhQKaXZ2Vn6/X5ZlqVqtPta+9TR7258az3e9dvjztL7tsw/+vtvtyuFwaGhoSK1WS9ls9ki8+sGfH9t3HwAAAAAAAAAAAAAAAAAAAAAAAAAAwItGwBoAAAAAAAAAAAAAAAAAAAAAAAAAAOAV87wCza8Th8Oh6elpud1u7e3t2aHYF8UwDEWjUU1PT8vv96tWq6ler8uyLPl8Pvn9frXb7Rc6BgCvNr/fr56eHlWrVVUqFTtq/03784P7ttfr1fT0tFwulyzLUrPZVLlc/l739cf5HvmmePTTBK0f/NyDn39wDB6PR6lUSgcHB8rlct86th/bdx8AAAAAAAAAAAAAAAAAAAAAAAAAAMCLRsAaAAAAAAAAAAAAAAAAAAAAAAAAAADgFfM0AdHXmWma6uvr08zMjNLptMrlsh2KfVG8Xq8mJyeVTCZVrVa1t7enarUqy7LU7XYVCoV+VPcAwFFut1vj4+NyuVwqFApqNpvfGoU+jD87nU4lEgm9+eab6unp0dLSkhqNhnK5nL23PM9A85/6rjAM47HP903H+a7fPRi+PvRwEPvw/S6XS4lEQi6XS6urq2q1Wvb7H9fznjsAAAAAAAAAAAAAAAAAAAAAAAAAAIAfCwLWAAAAAAAAAAAAAAAAAAAAAAAAAAAAeKm8Xq/OnDmjwcFBraysqFarvdBQqWmaisfjmpmZUV9fn5rNpiqViizLUr1eV7lcltfrlcvlemFjAPDqMgxD8XhcqVRKGxsbSqfTsizrOz/jcDgUjUZ1/vx5XbhwQQcHB3K5XGo0GlpcXFSn03nu4/yuqPOTxKsPj/U4x36aILbH41EqlVK1WtX+/j4xagAAAAAAAAAAAAAAAAAAAAAAAAAAgO8RAWsAAAAAAAAAAAAAAAAAAAAAAAAAAABIOhoc/b6Ypqn+/n69/fbbcjgc2tnZUbvdfqpjPe74HQ6HIpGIfD6fMpmMdnZ2VKlU1G631Wq11Gq1ZJqm3G73U40DwOvN4XCor69P4XBY29vbqlQq3xlcdjqdisViOnv2rM6ePautrS0dHByop6dHmUzGjja/KM8Smn74M4/zuSeJWJumqXA4rN7eXm1vb6tarX7rXv0yvoMAAAAAAAAAAAAAAAAAAAAAAAAAAAB+6AhYAwAAAAAAAAAAAAAAAAAAAAAAAAAAvEJeZsDzRQZWv41hGEqlUhobG9PW1pa2trbUarWe6liPO/5utyun06lWq6WdnR3t7u6qXq8fCVi3Wi05nc6nGgeA15vP59Po6KiazaY2NzfVaDS+dX9xOBzq6enRe++9p7/6q79St9vV7du35fP5FI/H7Wjz6+RJvwseDl8/+D32cAy8Xq8fec+Dn3v4vIZhHDnWy/iOAgAAAAAAAAAAAAAAAAAAAAAAAAAAeN0RsAYAAAAAAAAAAAAAAAAAAAAAAAAAAMAzOwyYPmlg9DD+6vV6tbi4qFwu98IjpZ1OR5ZlqdvtqtVqqdPpSPr6Gtrttrrdrlwul1wu1wsdB4BXUygUktvt1vLysg4ODtRqtb7xfYZhKBaL6e2339bf/M3faHBwUIuLi8pkMhoZGZEkbW5uqtls2u//MXhwD/d6vUqlUmo2m9rY2JBlWep0Oo+1zz/8nULAGgAAAAAAAAAAAAAAAAAAAAAAAAAA4MkRsAYAAAAAAAAAAAAAAAAAAAAAAAAAAHiF/FgCpw/y+XxqNptaXV1VrVZ74ZHSbrerfD4v0zQVj8cVDoflcrnsgLVhGHI4HHbYGsCPS6VS0Y0bNzQ/P69yufyte5Jpmurt7dWbb76pVCqltbU1LSwsyDRNDQwMaGdnR+l0+qWEl1+F7xLTNOX1ehWNRrW9va1MJqN2u22/TpAaAAAAAAAAAAAAAAAAAAAAAAAAAADgxXO+7AEAAAAAAAAAAAAAAAAAAAAAAAAAAADgx83tduvmzZu6d++eGo3G93LOcrmsTqej8+fPq91uK5fLaXt7246rejweNZvN72UsAF4t5XJZ9XpdlmUdCS4/zOFwKBwOa2BgQNVqVVeuXNHOzo7i8bjC4bB2d3dVrVZ/tKFm0zQVj8fV29urL7/8UtVqVRLhagAAAAAAAAAAAAAAAAAAAAAAAAAAgO8TAWsAAAAAAAAAAAAAAAAAAAAAAAAAAIBXiGEYL3sIT+Vpxm0YhgKBgLxerz799FPt7+9/Zyz2eel2u2q1Wtrf31csFtO7776rjY0NZbNZ+zoMw5BlWS98LABePe12+7H2om63q3q9roODA3U6Ha2trandbmtkZESWZeng4OCJ95HDPehZI8+vQiTa7XZrdHRUpmlqf3//qffUbrf7SlwPAAAAAAAAAAAAAAAAAAAAAAAAAADA68h82QMAAAAAAAAAAAAAAAAAAAAAAAAAAADAUa9rxPpJGYYht9utnZ0dLSwsqNlsfm/nbrfb2tra0ubmpsLhsMbGxpRIJOT3+yVJ+XyegDWA79TpdLS/v68rV67ozp07CgQCGh8f18jIiBYXF1UsFp84vPwqhJoNw3ji76GH3+90OpVMJjU8PKzV1VXl83l1Op1X4voAAAAAAAAAAAAAAAAAAAAAAAAAAAB+TJwvewAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4cep2u6pWq7p69aoymcz3em7LsrS5ualLly7pzJkzcrlcGhsbs1/f3d1Vq9X6XscE4PXS6XSUzWb1xRdfaHNzU5IUCoW0s7OjmzdvqtlsPtVxu92uDMN46bHnJx3Dg+83DENOp1P7+/taWFhQo9H43sYBAAAAAAAAAAAAAAAAAAAAAAAAAACAf2Hwh5oAAAAAAAAAAAAAAAAAAAAAAAAAALy+DMPgDwV/QAzDkGmaMgzjZQ/le2MYhgzDUKfT+d7P7XQ6lUwmNTIyIp/PZwdW6/W61tfXlc1mv/WzpmlK0ksZN4BXw+Fe7XA45Ha7FQgEFAgEVK/XlU6nZVnWSx7h83d4zQ//dwoe/r3D4VAoFFIwGFQ2m1WtVvvGzz2ObrerTqdDxPoV0O12fzz/DwoAAAAAAAAAAAAAAAAAAAAAAAAAAD8QBKwBAAAAAAAAAAAAAAAAAAAAAAAAAHiNEbD+YTmMV/+YAtYvm2EYcrlc9o9hGGo0GqrX698apw4EAopEIiqXyyqVSkRVgR8pwzCOPP+H+3e3232l94WHx/wkvi1gffjat83HN537cRGwfnUQsAYAAAAAAAAAAAAAAAAAAAAAAAAA4PXjfNkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF6WbrerZrOpZrP5WO83DEMDAwMaHR3VwsKCyuUyUVXgR+rhZ/9VD1c/D09yfc9rLn4M8woAAAAAAAAAAAAAAAAAAAAAAAAAAPCiELAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAHpPX69Xk5KRCoZAsy3rZwwGAF8YwjGcOVhOeBgAAAAAAAAAAAAAAAAAAAAAAAAAAeLnMlz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAA4HURjUaVSqVUrVZVKBTU6XRe9pAA4IkYhmH/fJdXIT79KowBAAAAAAAAAAAAAAAAAAAAAAAAAADgdUbAGgAAAAAAAAAAAAAAAAAAAAAAAAAA4BXxOEFRvDymaSoej8vr9SqTyaharb7sIQHADx4RawAAAAAAAAAAAAAAAAAAAAAAAAAAgKdHwBoAAAAAAAAAAAAAAAAAAAAAAAAAAAD4EwzDkN/vVzAY1M7OjnK53JGoqmEYMk2TAPkTeni+CNUe1e12mRO8UIZhsG8BAAAAAAAAAAAAAAAAAAAAAAAAAAD8gDlf9gAAAAAAAAAAAAAAAAAAAAAAAAAAAACAV53L5VJvb696e3uVz+eVy+WOvO50OhUIBCRJpVJJ7Xb7ZQzzhTIM47nFlB0Oh9xutzwejyzLUq1W+0HO2bN4HcLVh+Hj12GsL8PhvBCIBgAAAAAAAAAAAAAAAAAAAAAAAAAAwMtCwBoAAAAAAAAAAAAAAAAAAAAAAAAAAAD4DoZhyO/3q7+/X36/X/v7+yqVSkdeHxgY0IkTJ1QoFHTr1i0Vi8WXOOLnyzAMeb1eeTwetVotVSqVZzqeaZpKJpM6ffq0xsbGtLOzo6+++kqbm5tErB/wKkePDcOQx+NRIBBQt9tVsViUZVkve1ivlJcV9X7S0DzxcQAAAAAAAAAAAAAAAAAAAAAAAAAAgB82gz8oBQAAAAAAAAAAAAAAAAAAAAAAAADg9WUYBn8o+ANhGIZM03ylo7UAgMfz4N/xs68/vSf97yEcznWn01Gn03kRQ/pR63a7LGYAAAAAAAAAAAAAAAAAAAAAAAAAAF4zzpc9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfkiIVj8fTzuPTxq+BgAAAAAAAAAAAAAAAAAAAAAAAAAA+KEyX/YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOwUAIDnhYA1AAAAAAAAAAAAAAAAAAAAAAAAAADA1whYAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/MAQsAYAAAAAAAAAAAAAAAAAAAAAAAAAAHgFGIYhwzBe9jAAAHitdbvdlz0EAAAAAAAAAAAAAAAAAAAAAAAAAACAV4bzZQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAwI/Xg7FZIu74PrDmAAAAAAAAAAAAAAAAAAAAAAAAAAAA8GNBwBoAAAAAAAAAAAAAAAAAAAAAAAAAAOAV8LpHVA3DkGmakqROp3MkEAv8kBFDxqvicC3+2Nch3z8AAAAAAAAAAAAAAAAAAAAAAAAAAAD/goA1AAAAAAAAAAAAAAAAAAAAAAAAAADAS2YYhrrd7msbHfV6vRocHFRvb6/q9bq2t7eVyWTUbrdf9tCA71UwGNTo6KgcDoc2NjaUz+eJ6QIv2OF3KAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5FwBoAAAAAAAAAAAAAAAAAAAAAAAAAAABPxTAMBYNBnTp1SjMzM+rp6dHBwYEkqVwuq1qtPvKZByOjr2uwG3iQYRgyDEO9vb26ePGizp07p/39ff3yl79UsVgk5P6K63a77EWvuYfj1cSsAQAAAAAAAAAAAAAAAAAAAAAAAAAA/gUBawAAAAAAAAAAAAAAAAAAAAAAAAAAgJfsdY2ner1eTU1Nqbe3V9vb2yoWi3I6nTJNU6Zpvuzh4RVlmqZ8Pp/8fr8sy1KpVFKr1XrZw3omsVhMb775pgKBgBwOh6rVqmq1mrrd7msXbX/dxot/wf36GgFrAAAAAAAAAAAAAAAAAAAAAAAAAACAf0HAGgAAAAAAAAAAAAAAAAAAAAAAAAAAAE/MNE2Nj48rHA5reXlZ+/v7GhkZUU9Pj+r1+msfJH7dvC7RYafTqcHBQc3Ozqqnp0fZbFafffaZMpnMaxed7Xa7MgxDyWRSY2NjSqfT2t/f19jYmBYXF5XP51+7a/oxczqd6uvrk2EYOjg4UKPRkPT6PFsAAAAAAAAAAAAAAAAAAAAAAAAAAADANzFf9gAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+7F63KOphtHdqakrFYlHr6+vK5XKSpEajoXK5/K0Ba8Mw7B88H98USTZNUz6fTy6X6yWM6OsxHf4ccjgc6u/v1/HjxxWPx+V0OjUwMCCPx/NEoWeHw6FAICCHw/Eihv7YTNNUOBzWyZMn1e12tbi4KMuylM/ntbCwoFqtRsD6FfXgPmQYhjwej9544w198MEHOnfunAYGBmQYxg/i/n3Ts/hD9mO5TgAAAAAAAAAAAAAAAAAAAAAAAAAAgMdFwBoAAAAAAAAAAAAAAAAAAAAAAAAAAOAV8DoFnf1+v44fPy632639/X1Vq1X5fD653W7l83mVSiV1Op3vPMaDUdUfQnD0T92/7yvabRiGnE6nent7derUKUUikRd+zj+l2+3K4XAoHo+rv79flmVpeXlZW1tbKhQKqtVqj30sh8OhoaEhnTp1StFo9KU9N4ZhKBQKaW5uTvF4XNvb27IsS6lUSgsLC0qn0/Yz8LpF21+38T7sSfcVr9erqakpnTlzxv53IpF45Ppf1/l40INzY5qmQqGQxsbGNDQ0JNP8+j89YJqmYrGYksmk/TsAAAAAAAAAAAAAAAAAAAAAAAAAAAC8vviLUQAAAAAAAAAAAAAAAAAAAAAAAAAAADw2h8OhgYEBjY2NaXd3V/l8Xg6HQ8lkUoZhKJfLqVqtvuxhvjIMw5DX61UsFlMkEpHD4Xgh5zj8cblc6u/v1xtvvKGJiYnnfq6n4XA4FA6H1dvbq06no7W1NeVyObXbbe3t7alcLj/2sYLBoKampjQ+Pi6fz/cCR/3tDMOQ3+/XyMiIUqmUtra2VCqVNDg4qGAwqLt376rZbP5g4uw/ZG63W8lkUgMDA9rd3dW9e/dUr9fVbrePvO91jld/09idTqcSiYTOnj2rn/3sZzp+/LhcLpfcbrdGRkZ0/vx5TU5OyuVyvYQRPxueOQAAAAAAAAAAAAAAAAAAAAAAAAAAgKMIWAMAAAAAAAAAAAAAAAAAAAAAAAAAALyGTNOUy+WS1+uV1+t9IWHkb+L3+zU2NiZJ2t7eVrPZVCQSUV9fn1qtlorFolqt1vcylufhMDL8rLHhb/usYRiKRqMaHx/XyMjIC40uO51O9fX16a233tLc3JwymYyKxeILO993OQxqS1IgEFBfX598Pp+y2awajYbi8bgcDod2dnbUbDYf+7g9PT0aGBhQuVxWo9H4XmO1h2vE7XYrlUrp+PHjqlarWlpaUjgc1vj4uNLptHZ3d4novgZcLpd6enrU39+vg4MDXblyRZVKRZ1OR8Vi8aXcw2/bi551j3rweXS5XEokEpqZmdFbb72l8fFxO149ODiod955R6dPn5bX62UdAwAAAAAAAAAAAAAAAAAAAAAAAAAA/AAQsAYAAAAAAAAAAAAAAAAAAAAAAAAAAHiJDqOij8s0TQWDQQ0PD+vEiRM6e/asjh8/rkgk8sTHehq9vb3q6+vTwcGBMpmM3G63+vv75fV6lc/n7QDsIcMwZJqmTPPon7UeBlUfDKu+zrxeryKRiHw+35FrNU1T0WhUw8PDSiaTcrvd33mcp43UmqapSCSimZkZnTx5UtVqVQsLC08Uh34RTNNUIpFQIpFQs9lUp9NRT0+PYrGYcrncE8WenU6nhoeH5fF4tLe3p2q1+oJH/81jSCaTmpubk9/v19LSkur1uiYmJhQIBLSysqJGo/Gta9o0TTmdTjkcjh/Eun8VPc6+4nQ61dPTo1QqJUlaXV1VqVRSNBpVvV5XsViUYRhyOp2P7F2vC6fT+cj4HQ6HwuGwUqmURkdH5fF4tLGxoZ2dHUUiEZ05c0YnTpxQuVzW6uqqWq3WS7yCp0N0GwAAAAAAAAAAAAAAAAAAAAAAAAAA4Cjnyx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAHo/b7VYsFtPY2JimpqbU09Mjj8ejYrGojz76SMViUZZlvbDzO51OjY+Py+l0amNjQ61Wyw4zp9Np7e3tqV6vS/o61Ot2uxUIBOTz+dTpdFQoFFStVn8wgdFut2tHcgOBgGKxmH0PDiPepmkqHA4rHA6rWCyq3W6/kLF4vV4NDAxoZGRE7XZbN2/e1N7e3pExSl/fQ5fLpXa7rVar9cLvhc/nUzKZlCRVq1VFo1H19fWpWCxqbW1N5XL5sY8VDAY1OjqqZrOpbDb7vcS5H5wfwzAUDAZ1/PhxDQwM6MaNG9rc3FRfX5+Gh4e1s7OjXC4np9P5yHNoGIZ8Pp/i8biCwaCq1arS6bTq9bpM01S3231ha+NV4nQ61el01Ol07Ll91pD3w/fo214/fM3hcCgWi+nYsWNyOBy6d++eSqWSHVY/3MdisZh8Pp8KhYIqlYr9TD94LsMwHvn9s3icuXj4mf624/h8PpmmqXq9rmazKcMwFA6H1dvbq1AoZK/BjY0NNZtNzczMaHZ2Vq1WS3fu3NH+/v73vlcfXtcP5TsCAAAAAAAAAAAAAAAAAAAAAAAAAADgVUDAGgAAAAAAAAAAAAAAAAAAAAAAAAAA4CV63Hir2+3W4OCg5ubmNDo6KofDoc3NTXk8Hg0MDNix0hfJ5/NpeHhY+/v7Ojg4sCOw2WxWm5ubKhaL6nQ68ng8ikQi6unpUX9/v+LxuCzL0vz8vJaXl7+X8PDjenD+u93uE0d1D2Oy5XJZnU5HrVbrSNDWNE0FAgG53W5Vq1W1Wq3newH6l0j2yMiIfD6flpeXtbi4qFqtduQ9oVBIPT09SiaTKhaLWl9ft4PibrdbHo9HrVZLjUbjuUR5DcPQwMCAenp6dHBwIL/fr8HBQbVaLS0vLyuTydjz53Q65fV61el0VKvVjgRsD9/T19en3t5effnll8rlct978NnpdKq/v19TU1Pa29vTwsKCHA6H5ubm1Gg0VK/XNTk5qVwup/39fZVKJbXbbRmGoUgkYofnBwcHtba2pi+++EKFQkE+n0+NRkPlcvmlRqwP94/nGWR+kMvlsuPlpVLpWyPFpmnK4/HI4XCoXq8/EgN/8H2maarT6Tz2vBmGIb/fr9HRUfn9fs3Pz+vg4EAOh0NjY2MyTVO7u7syTVPnzp1TLBbT559/rnq9fmRenE6ngsGgXC6XSqWS6vX6k0/Inxjns8SxHwxBHz4/4XBYY2NjisViarVaajabarVaKpfLmpiY0Pj4uKLRqBYWFrS0tHRk/3jRDp9/n8+nbrerSqXy1PsQ8WsAAAAAAAAAAAAAAAAAAAAAAAAAAICjCFgDAAAAAAAAAAAAAAAAAAAAAAAAAAC8RI8TSnY4HOrv79e5c+fU19enxcVFLS8va29vT9FoVD/72c8kvbjw7KFYLKb+/n5du3ZNLpdLp06dUqPR0NLSkrLZrDqdjvx+v0ZGRjQ5OalwOKxqtapqtapwOKzBwUGtr6/Lsqwjsehv43K5nihO+6I9HLd+8N61Wi3l8/kjwVhJ8ng8isfj8ng8KpfL6na78vv9arfbajQaR94rfR0Jb7fbTxS6DgQCGh4e1ujoqB3cPYxDS1+Hfvv6+nTmzBlNTExoYGBAhUJBf//3f6+trS25XC5NTExobGxMm5ubWlxcVLlcfub58vl8euONN9TtdpXJZDQ8PCzDMHT37l0dHByo0+nI4XDI5/NpaGhIExMTqlQqun79uj1XhwzD0PT0tPx+vzY2NlQqlR4JhTscDjvC3G637XXzPIK2hxHqmZkZ9fT06Msvv1Sz2dSxY8fU39+vu3fv6i//8i/V39+vr776Snfu3NHt27eVz+cVCoV08eJFjYyMaG9vT5lMRuVyWZZlKZFIKJlMamtrS6VS6ZnH+bTX5nK5FI1G5XK5lMlknnuQWfp6nZ4/f17Xr19Xq9WSZVlqt9uP3MdYLKbJyUkFAgHdunVLBwcHj6wFn8+neDwur9ercrmsTCZjPzMPv/dBHo9HqVRKo6Ojmp+f197enrrdrnp7ezU6OqqbN28qn89rYmJC58+fV61Wk2VZR8ZoGIYSiYTOnj0rr9erq1evamdn57nsU91uVy6XS6FQSE6nU/l8/she4HQ6FQqF1G63ValUvnHPNwxD3W73yHry+/2anJzUyMiIDg4OVC6XNTQ0pHq9rlAopJmZGeVyOZXLZS0tLSmXy33rc/NgHPtZmaYpn8+ngYEBDQ0NaXBwUJZlaX5+XsvLy6pWq898DgAAAAAAAAAAAAAAAAAAAAAAAAAAgB87AtYAAAAAAAAAAAAAAAAAAAAAAAAAAAAv2XdFrA3DUDQa1YkTJxSPx3X58mXNz8+r2Wza8U9JqtfrsizruY/tMFLqcDg0ODioYDCoarWqc+fOyePx6Nq1a8pkMmq32/L5fJqZmdH09LRKpZKuXLmig4MDhcNhnTp1yr7OWCymarWqWq32jec7DOpOTEyoUCgcidO+SIfh18eJij8Ys3a5XPL5fKpUKkfugWEY8vv9isfjMgxDlUpFQ0NDGhsb08HBgW7dunXk/U6nU2fOnNHe3p5WV1ePnM/pdMrj8ajZbB6ZC4fDod7eXp06dUpDQ0MqFApaWlpSs9mUYRgyDEPxeFx//dd/rVAopCtXrmh+fl4XL16Ux+ORw+HQ2NiYPvjgA42Ojur27dvKZrPPHLA2DEP9/f2anZ3V7du3NTQ0JKfTqdu3b2tzc1PtdlsOh0PhcFgnT57UBx98oEgkokajoZWVlUfOHwwG9cYbbyifz+vg4MC+PqfTKZ/Pp1AopGg0qmAwKEkqlUo6ODhQu91WoVB46rjwgyHy8fFxnTx5UuVyWQMDA7IsS++++65WVlY0NDSk8+fPa21tTVevXpXH41E4HFa73dbZs2f1l3/5l/rjH/+oTz/9VKFQSJVKReVyWWNjY+rr69Pa2toLD9B/E9M0FQqFlEqlND4+rsHBQV26dEn3799/7vuJ0+nUwMCANjc3FYvF1O12tbm5qVwup06nI8MwFA6HNTs7q7feekuWZWl7e1v7+/v2MR5cMxcuXFCn09Hm5qZ+9atfqVgs2u/pdrv2fB7eQ6fTqf7+fr3xxhvKZrNaXl5Wp9NRIpHQO++8o2w2q9XVVQWDQZ07d06tVkvtdlvVatVeP4djPHv2rP7sz/5M+Xxe8/Pzzy1eLck+fygU0scff6xMJiPDMORwONTf368PPvhApVJJly9fPhKql76+n4fPUa1Ws4PYY2Nj9r68sbGh4eFh9fT0aGtrS2NjY/a9SCQSWl5efiRgbpqmXC6XvWdYlmXHvR90OE632y2Hw6F6vf6te7fT6VQikdDJkyd1+vRpWZYlh8OhSCSiVqul/f39Jw5YP4+oNgAAAAAAAAAAAAAAAAAAAAAAAAAAwA8NAWsAAAAAAAAAAAAAAAAAAAAAAAAAAIBXlGEYCoVCmpub08DAgBYXF3X37l01Gg073hsIBFSv15XL5Z77+R+MgQYCAaVSKRUKBU1NTcnpdOoPf/iD0um0ut2uPB6PJiYmND4+rvX1dd25c0eVSkXhcFjDw8MKBAJaW1vT8PCwZmdndfXqVW1ubsowDJmmeSQAa5qm+vr6dPHiRd2/f1/lcvm5BqwNw5DH45FhGGo2m3bkVZJardaRkPBhkNXpdKrRaKjT6RyZF5fLpWPHjml4eFhXrlxRuVy2X3c6nYpEIpKkarWqsbExzc3NaWhoSNvb21paWlKpVLLfOzw8rLfeeku/+c1vjozX7XZrfHxc4+PjunXrlnZ2dtRut2WapmKxmGZmZnTy5ElJ0qVLl+yQr2EYikQi+vDDDzU2Nqb/8l/+i0qlkt5++20dHByoWCwqGo1qbm5O2WxWzWZTgUBAyWRSW1tbzxTl9fl8mp6elmVZisfjqlarun37tpaXl9Vut4+EgC9cuKD5+XltbW3pzTffVCAQeOT6p6amFIlE9Ic//EHVatWe28nJSR07dkyhUMh+bzweVzgcVrFYVDqd1v/6X/9Le3t7cjgcMk3TDvs+jsMY79DQkM6ePSuPx6Nbt25pYmJCY2NjKhaLqlQq+su//Etls1nNz8/r5s2barfbCgQCmpyc1Pj4uLa3t3VwcKBGo6GDgwN1u13F43Elk0kFAgE7snwYHT9cZw/H1B8Mpz+rw6DzqVOnlMvltLKyIq/Xq56eHi0vLz+XgPXheA/DxJFIRD/72c/k9XplmqZ+//vf6+rVq6pWqwqHw5qcnFR/f7+Wl5fldrvtMRyG4gcHB/XOO+8omUxqcXFRlmXJ6/Xa+0gkEtHAwIDK5bL29/dVq9Xs88fjcR0/flw+n09fffWVTNPU8PCwzp8/L8uydO3aNQUCAZ08eVK5XE4ul+uReHUoFNLp06c1NTWlZrOpTCbzXOfJNE15PB6FQiEFg0E5HI4j43/jjTc0ODiobDarCxcu6KOPPrJj7w6HQ319fXr33Xe1vr6umzdvqtlsamhoSG+88YYMw9D6+rqCwaBGR0clfR3LTiQSunLlirxer1ZXV5XJZI6Mzel0KplM6tSpUxodHZVhGFpdXdX169eVzWbt/dLhcCgQCGhwcFCzs7MKBoOan5/X7du37ftgGIa63a68Xq8mJib0zjvvKBwOa319XUtLS/L7/Tp16pScTqfcbrf9/ofn6dvWPwFrAAAAAAAAAAAAAAAAAAAAAAAAAACARxGwBgAAAAAAAAAAAAAAAAAAAAAAAAAAeEn+VITW7XYrlUoplUrp4ODgSLza5XLJ5/MpGo2q1Wo918Dzww7DqGNjYwqFQvJ6vbp8+bLS6bQ6nY5M01RPT4/Gx8dVKBS0urqqRqOhgYEBTU9PK5lMamVlRcViUadPn1YsFlOj0ZDT6VQ8HlcsFtP6+rodOXW73RobG5Pf71e9Xn+mkPI3CQaDGh8fl2EY2t7elsfj0fDwsCzL0vLysrLZrKSv708gENDY2Jh6enp0/fr1I6FwwzDU19enM2fO2OHqBwOqPp9PfX19dly52WyqWCyq0WjINE25XC57DQQCAc3OzsqyLO3s7Bw5R29vr9555x25XC4tLCzYkWOv16v+/n6Nj48rEAhodXVVi4uLdtza4/FoZmZGp0+f1u3bt9XT06Of//znqtfr+n//7/+pUqloenpahmFoeXlZvb29Gh4eltvtfiQq/iQMw1B/f7/m5ubk9/vl9Xp1/fp1LS4uql6vyzAM+f1+jY6OamBgQNeuXdOXX36p6elpxeNxRaPRI89GOBzWiRMnVKlUtLGxIdM0NTk5qXfeeUeRSEQrKyu6du2a8vm8AoGA5ubm9Od//ud69913tbS0pK+++kpDQ0Pq7e3V/fv3de/ePUn6xkD0g3w+n4aGhjQ2NqbZ2VmdOXNGDodDwWBQwWBQxWJRe3t7Ghsb0/DwsPb393X58mW12235/X7NzMxoZGRES0tL2tvbs9dHq9WS0+lUKBSSy+VSLpdTpVKR2+1WMplUOBzW6urqkefB7XYfiSn/qbH/KYdR9Onpad2/f1+rq6sKBAKKxWJPFPh+XD6fTxMTExoYGNDy8rIWFhaUSqUUDocVCoXkdDo1NDQkt9utxcVFeTweJRIJVSoVe7+bmJjQhQsXlE6ndeXKFYXDYX3wwQfa2tqSZVkKBoN688039e6772pra0u/+93vtLKyom63K7/fr1QqpZ6eHq2ursqyLL355pv68MMPlcvl9L//9/+Wz+fT5OSkGo2Gstms+vv7tbm5qWazaa/ZiYkJDQ8Pq1wua2NjQ5lMRtVq9bnNk2ma8nq99jN4GHE+fF6i0ah+//vfq1wua3Z2Vm+++aZu376tYrGoWCym999/XydPnlQmk5HL5VIsFtPbb7+tRCKhO3fuqN1u28H3arWq/v5+7ezsqFAoyO/369atW6rX6/Z4DtfJe++9Zz+vrVZL+Xxepmna69Dj8WhoaEinT5/W5OSkXC6XXC6XotGodnd3tbm5aR8zGAzq9OnTevPNN7W5ualPPvlE6XTa/s7I5/NH1uDDEWsAAAAAAAAAAAAAAAAAAAAAAAAAAAA8GQLWAAAAAAAAAAAAAAAAAAAAAAAAAAAAryDDMNTT06OJiQm1Wi0tLS3ZUdJEIqGhoSF5PB45HA47gPsixuB0OhWNRnXmzBkNDw/rxo0b+vTTT7W/v69OpyPp6yDp8ePHFY1GdffuXUnS3NycJicn1el09OWXX2pnZ0djY2MaGBjQ3t6eKpWKotGo3n//ffn9fmUyGdVqNRmGoUgkoqGhIZVKJaXT6ece53Y4HPJ6vTJN0442j4yMKJ1Oa39/3w5Yu1wuDQ8P6+zZs8pms3Y8XPo6IOz1ejU1NaVoNKr5+Xk1Go0j5wmFQurv71cymVS9XtfKyorS6bRSqZRqtZqazaY9noGBAY2Pj2tjY+NIENfr9Wp2dlY9PT26deuWqtWqQqGQDMNQPB7X7OysUqmUyuWylpaW7Iizz+fTyMiIfvaznymRSCiRSMgwDF27dk13795VoVDQ8PCwUqmU0um00um0YrGYqtXqkYDt085vKpVSf3+/Dg4OdOXKFd29e1flclmS5PF4NDg4qFQqpf39fX355ZcKh8M6e/asfD7fkbVsmqbGxsY0OTmplZUVVSoVnTx5UufPn1cul9OvfvUrpdNpeb1ejY6Oam5uTqdPn9b09LSi0ahSqZT+9m//VouLi7py5YpWVlbs+3f4f78tBB2NRnXs2DGdPn1ap06dUjwe18LCgm7fvq3t7W3lcjnV63WdOXNG4+Pjmp+f1/r6ulwul+bm5jQ7O6v5+Xnt7u5qcnJSlmXZ53W5XIpEInI6nSoWizJNUxMTE3r77bfVaDS0s7OjWq0mv9+vc+fOqbe3V3/4wx+UTqef6d5IktPptOPVKysrWlxcVLfbVSwWk9frtYPQzxrJPnT4TE9OTiqdTuuTTz6RZVmKRCLy+/0aHByUYRjy+Xza2dlRvV7XsWPHVK/XValU5HK5NDIyolOnTmlra0tffPGFTNPUhQsX1NfXp2vXrqndbiuZTOrkyZMaGRnR9va2LMuSYRhyOBzq6enR+Pi4fD6fTNPUX/zFX+js2bNKJpNaXFzUT37yE9VqNS0uLmpra0tnzpxRu93W/v6+LMuS0+nU6OioJiYmVCqVVCgUFIlElMlk7HX9PByG6U3TVKVSUbvdltfrVSqV0uTkpHZ3dzU/Py/LslQulzU5OamLFy/Ksiz19/frxIkTyufzymaz8vl8OnXqlAYGBrS+vq5MJqOBgQFFo1HVajWFw2F1u11tbm4qHA4rnU5re3vbHofb7dbk5KTOnz8vp9OpfD6v8fFx5fN5bW9vq1qtyjAMBYNBTUxM6OTJkwoEAlpYWJBpmjp37pwCgYCcTqe9jsLhsC5evKizZ8/q5s2b+uyzz5TP59XtdhWPxzU6OirDMOyotqQnilcTugYAAAAAAAAAAAAAAAAAAAAAAAAAAHgUAWsAAAAAAAAAAAAAAAAAAAAAAAAAAICX5LvisH6/X9PT00okElpaWtL29rba7bbi8bhOnTqlqakp7e3tqV6va2dn57lGng+jr9FoVGNjYxoeHta5c+dUrVZ169YtZTIZdbtdmaYpwzDU19ensbExORwOjY+Pa2pqSt1uV2tra1paWlIul1M4HFZvb68sy9LKyoparZaGh4c1PT2t+/fv29FkwzA0PDyscDishYUF5XI5tdvt53Zt0tcBX5fLJb/fL6/XK8MwVCwWVS6X1W63ZRiGDMNQNBrV1NSU3G631tbWjgSqTdNUIpHQ5OSkqtWqMpnMkXE6HA4lk0mlUimFQiHt7e1pY2NDlmWp1WrZYVzDMOTxeDQ1NaVIJKKrV6/aYXBJ9tzu7u7q/v37Mk1TZ86c0ejoqHp6ejQ0NKTe3l6Vy2WNjo7q3/7bf6tAIKBwOKyhoSFJ0h/+8Ad9+umnOjg4UL1eV6fTkdfr1cTEhCRpY2NDlUpFDodDjUZDrVbrmcLFh7HiTCajP/7xj7p7964dpT6Mhh8/flwul0t37txRp9PRzMyMJiYm7FD74T3w+/06efKkJGllZUUzMzO6ePGiWq2W9vb2NDs7q0QioWg0qm63q2q1qv39fYVCIV27dk0ff/yxVlZWtL29rWKx+ETXYRiGGo2GHR//1a9+pY8//li7u7uyLEumaWpoaEiDg4OyLEt37txRtVrVzMyM5ubmtLCwoPn5ecViMRmGoVKpZM9tIBBQT0+PXC6XSqWSIpGIzp07p7GxMV26dEnValUul0uzs7P62c9+pqWlpWd6Dg7Dvoch5tnZWW1ubur+/ftqt9vy+/06ffq03G637ty581zj1YcRcq/Xqy+++EKrq6vq7e1Vp9OR2+3WxMSE2u221tfXVS6XlUwmFQwGtbm5qWazqZ6eHp07d061Wk1Xr15VsVjU1NSUpqamtL29rZWVFTtgnUqlNDQ0pPHxcQ0PD6tSqcjr9erEiRO6cOGCHZWfn5/X//2//1fHjx9XJBJRqVTStWvX7PDzwMCAisWiHVfu6+vT6OioqtWqstms+vr6ZFmW9vf3VavVnss8SV/fn0gkIrfbrXQ6rUajoVAopFQqpUajoXv37tnP0s7OjvL5vMLhsMLhsBqNhgYHB7W5ualisaixsTGNj49rf39fu7u76u/vVywWU7FYVDAYVDAYtIPrwWBQGxsb9j7s8Xh0/PhxTU1NqVKpyDAMzc3NqdPp6N69e3bkPBAIaGJiQlNTU6pWq/ryyy9lWZYuXryoeDyu+/fv2yFqn8+nCxcu6N1339Xt27f1+eefq1gsyufzaWxsTCdPnpTb7dbt27e1srKiarX6SJD6eaxJAAAAAAAAAAAAAAAAAAAAAAAAAACAHxsC1gAAAAAAAAAAAAAAAAAAAAAAAAAAAK+gWCymoaEhNZtN7ezsqFKpyOfzaXx8XHNzc8pmsyoUCgoEAsrn87Is65nOdxgGdbvddvz4/fff1+joqG7cuKFms6m1tTXt7e3J6/XK4/HI6XQqHo/r/fff17lz52RZlhYWFvTll19qYWHBHpfL5VJPT49GR0e1t7en3d1dud1uHTt2TNFoVHt7e3aA2+/3a3x8XNlsVsvLy6pUKo9ETJ9VNBpVb2+vYrGYNjY2VCqVFAqF5HK57Hi03+/X1NSUTpw4of39feXz+SNhaZfLpbNnz2piYkK/+c1vVCgUjrzu8Xg0NjamyclJtVotLS8vK51Oa3BwUF6v1w5zHwadf/KTnyiXy2lnZ8c+jsPh0KlTpxSNRnXp0iXt7e2p2WwqFArp+PHjGhgYUG9vrzwejzY2NrS2tqaNjQ3VajVFo1F98MEHWlxc1G9/+1s7On7oMLy8sLCg/f19eTwe+f1+tVotVSqVI9fyJLxer37605/q7Nmz+vjjjx+5h36/X8PDwwqFQrp3754KhYKmpqb07rvvyufz6d69e/L5fLp48aI6nY4GBwf185//XF6vV8lkUgMDA+p2u1pfX1en09Hu7q6Wl5e1tbWlQqGgsbEx/dVf/ZVKpZJ+85vf6MqVK6pWq4+M83FCuLlczn6u7t69q0uXLmlra8u+FtM0FY1GNTo6qq2tLa2trSmZTOr999/X+vq65ufnValUdPr0aUWjUTtCf/i5ZDKpZrOpZrOpyclJnThxQoVCQaurq2q324pGo3rrrbc0PDys69ev28Hzp3EYkk4kErpw4YJ2dnZ07949NZtNO058+vRpXbp06ZG1/qzi8bjefPNN7e3t6ebNmyqVSnbQOh6Pq9VqaX5+Xjs7O/J6vRoZGVGj0dDe3p6i0ag+/PBDGYahzz77TMViUeFwWO+//756e3v16aefqlgsyjRNDQ8PKxAIqFgsKpVK6e/+7u9Ur9fldrsVjUZVLBb10Ucf6cqVK9rb27N/X6vVdPfuXWUyGXU6HQWDQUWjUfv++Xw+TU9PyzAMraysKBqNKpFIKJfLKZvNPte5crlcikQidthcknp6euT1erWwsKC9vT1JXwfJLctSuVy2o9rHjh2TYRhaX19XKBTSmTNn1Gg0dHBwoLGxMQUCAa2urqrT6Wh4eFilUkmVSkW9vb1aWlrSwcGBpK/3nWPHjuncuXNqNBrqdDry+/3y+/1aWlrSl19+qWw2q263a8foD8PTe3t7mpiY0NjYmMrlshYWFlSv1+V0Ou0Y+87Oju7cuaPBwUG9//77GhkZUbvd1uLiou7cuaOdnR37vAAAAAAAAAAAAAAAAAAAAAAAAAAAAHh2BKwBAAAAAAAAAAAAAAAAAAAAAAAAAABeom8L0gYCAfn9fm1ubiqfz8swDE1MTOjChQtyu91aWFhQJBJRo9Gww6vPMga32y2/3y+fzye32610Oq3NzU1FIhGlUimdOHFCiUTCDggfni8UCimVSmlnZ0e//e1v9dVXXx0JahuGoVgsptOnT2toaEhffPGFqtWqent7NTg4KKfTaYeCDcNQT0+PIpGIvvjiCx0cHDxzmPvQg9Hh/v5+TU5OKpPJaGNjQ06nU8PDw2q1WnbwdnBwUKdOnVIgEFA2m1WpVDpyr1KplObm5uT1epXJZOwA9yG/369UKqVgMKgbN25oYWFBrVZL8XhcbrdbxWJR0teh62PHjmlwcFBra2sql8v2vKVSKb3//vtaW1vT7u6uGo2Gfa8WFxe1sLCg6elphUIh/frXv9b9+/dVr9fl9Xo1OzurYDCojY0NlcvlI+sjHA7r3Llz2t7e1tLSkqrVqsLhsHp7e5XJZGRZ1lNFw51Op/7sz/5M586dk9frVT6fV61WU7fbtefO5/MpHo/LNE2VSiUNDw9rZmZGkUhEt2/f1r179+R2uzUzM6Ph4WGlUikNDg7qo48+0tramn7605/qD3/4gy5fvqy9vT07dNvtdhWPx3Xs2DGlUil99dVXunfv3jfGqx9nnRyONZVKqdVq6ebNmzo4ODjyutPpVH9/v3p6evTRRx8pn8/rb/7mbyRJV69eVS6Xk8/n0+TkpNLptDKZjJrNpiRpYGBAwWBQy8vL8nq9euONNxSPx3X58mXt7u7K4XAolUrJ5/PJ5/OpXC4/ssaelN/v1/nz59Vut3Xjxg07kDw0NKT/+B//oyqVipaXl1Wr1Z7pPA9yOBx677337DlKp9MyDEPDw8PyeDwKhUJaW1vT2tqaLMtSKpWS9HUwvFqt6ty5c0qlUvrHf/xHbW9vy+l06ic/+Ynm5uZULpe1tLSker1uB+dzuZz+8R//Uel0Wn6/X263W8PDwxoaGtL9+/f1+9//Xul0Wp1OR06nU36/X7VaTYVCQe12256PUCik3d1ddTodzczMKJlM6t69e8rlcjp58qSCwaDu37+vYrH4VM/Kt/F6vYpEIpJkx7rHx8dVrVa1tbWlRqPxyGc6nY48Ho/m5uZUr9e1v7+v48ePKxaLaX5+XoODg3K73bpz5442Nzd14sQJe97j8bja7baWlpZULpfV7XY1NDSkDz/8ULFYTPv7+1pcXFQqlVKj0dDly5e1srKier0u0zQ1ODio3t5ebW1taX9/X4FAQCdOnNDw8LA+//xzO0qeSCT085//XFNTU3I6nfrFL36her2uvb09ffbZZ1pZWVEul1OtVnum77LneS8AAAAAAAAAAAAAAAAAAAAAAAAAAAB+KAhYAwAAAAAAAAAAAAAAAAAAAAAAAAAAvCTfFq+WJJfLJa/Xq0ajoWazqcHBQb3zzjs6duyY/vjHPyqdTmtqakoLCwuqVCrPPJZ2u61KpaJisWgHRLPZrK5du6Y///M/1/b2tv7whz8on8+rWq2qUqmoVqvJ4XDo3//7f6+1tTXdu3dP2Wz2kVjy2bNn9eGHH6parSqfzyscDuudd96Rw+FQIBCQ0+mUYRgKhUJ6//33VSgUtLGxoXq9/szX9bBIJKK33npLoVBIn3zyiba2tjQyMiK/3698Pq9ut6uxsTGdO3dO9Xpdm5ub2t3dPRJCPgxAN5tNtdttO8B9yDAMhcNhDQ4OqtlsanFxUTs7O4pGo4pEIjJNU+VyWU6nUwMDAxobG1Or1VKlUlG1WpXT6dTIyIj+6q/+SpOTk7p8+bLy+bxM09Tx48d17Ngxra+vq9FoaGZmRpVKRRsbG3Z4uN1uy7Is+f1+VSqVI9Fbl8ult99+W16vV/fv31epVFK321UwGFQ4HNb6+rqKxaId830SsVhMwWBQv/vd7/Tv/t2/s8PSD0ZlPR6Pent71dvbq9XVVXuefD6frl27pt3dXUnSpUuXdPLkSX311Vf64IMP9J//839Wu93W3NycMpmMcrmcqtWqvdYMw1AgEFBfX5/q9bo+/vhjpdPpJxr/g+M0DEMDAwN2nHd5eVmNRsN+j2EY8vl8Onv2rPx+vxYWFjQyMqLZ2Vn9p//0n7Szs6NOp6OhoSGlUildv35d+Xxe7XZboVBIY2NjcrvdyuVyGhgY0OTkpOr1ulZWVtRqtZRIJHT+/Hnt7+/L7XarXC4/U8zd4XAokUhoenpav/zlL5XNZiVJIyMj+ru/+zv19/fr7//+7+1o8/PS29urn//85/r888+1tramZrNpR+8Pn4Xd3V1lMhkNDQ0pkUhofn5e+/v7SiaTOn36tA4ODrS8vKxOp6MTJ06ov79foVBIn3/+uQ4ODiRJx44d07Fjx7S0tKS7d+9qa2tL3W5XLpdLFy5cUDweVzqdVi6XU7vdlsPhUCQSUSQS0ZUrV+ygvMPh0OjoqOr1unK5nEZGRvT2229rfn5em5ubikajGhgYULFY1Pr6+nONfUtfPx+HAWvLstTf36+BgQFdvnzZHqP09fp7cL2GQiENDg7q0qVLqtfrmp2dVbVa1fj4uEqlkq5du6alpSVFIhENDg6qr69P1WpVXq9X//zP/6xMJqN2u61AIKD33ntPb7/9tr766itduXJFoVBIp0+f1uXLlzU/P69KpWJH6UOhkLxer71vvfHGG3r//fcViUTkcDj04YcfKplMamBgQCdOnNDS0pI+/fRTra6uanNzU9VqVc1mU61Wy94vAAAAAAAAAAAAAAAAAAAAAAAAAAAA8HwRsAYAAAAAAAAAAAAAAAAAAAAAAAAAAHjFOBwOSf8S5Z2YmNCpU6d09uxZZbNZra+vy+/3q16va2lp6ZnCttLX4d5vOka9XrejqV999ZX++Z//2Y5Kd7tdORwO9fT0qFAoqFwuq9Vq2Z81TVORSESnT5/W6dOnlc1mZZqm+vv7NTY2pv7+fn3xxRcaGBjQ6dOntbOzo3Pnzml0dFT//b//dxUKhecaMzUMQy6XS6dOndKxY8fsIG2z2bTn2+fz6dSpU5qZmbHn9tSpU2o2m+p0OjIMQ36/X7OzsyoUCgqHw9rd3VWhULDPcRjN7enpkc/n097enra2tmRZlnw+n/x+v9xut8LhsE6dOqWTJ09qfX1de3t78nq96u3t1VtvvaXZ2Vnt7e2pUCio0WgomUxqfHxcpmnqxo0b2t/f19jYmAzDULFYPBL77na7arfbarVaGhoa0q1bt2RZliKRiN59912NjIzo0qVLGhkZ0bFjx7Szs6OxsTF1u13lcrmnCod7PB4FAgH97ne/k9fr1d7e3pF13O125XQ65ff77SDu2NiY9vf3VSqV7IBuNBrV5OSkQqGQvvjiC42Pj+vg4MAOeN+5c8cOeDebTTsgHA6HNTc3p/7+fi0uLmpzc/PIevxTHl5rHo9HIyMjarVaWl1dVa1WOxKvdjgcisViGhkZ0d27d5VOp/Vv/s2/0fz8vNbX19XpdBQMBvWTn/xEm5ub2traUqPRkMPhUF9fn3p7e9VsNjUwMKBTp07J5XJpc3NT5XJZQ0NDOn/+vLLZrKrVqizLUqFQeKqo+OF4g8Ggjh07pkwmo5WVFTkcDo2Njelv//Zvlc1mdffuXa2srKjZbD7VOb6Jx+PRhQsX1Gw2denSJZXLZfv6w+GwTNNUtVpVvV7X8PCwBgcHtb29rc3NTRmGoXg8rkgkos8//1zdblfj4+Pq6+vT1taWXC6X7t+/r263q7m5Ob333nvy+Xza3t5WsVi0773b7Van01G9XrfD7l6vV6Ojo7pw4YIymYzu37+vTqcj0zSVTCY1MTGhL7/8Uj09PXr//fe1srKir776SrVaTadOnZLH49H29ray2ewzx74fXFNOp9O+5kqlomg0qlQqpWq1qo2NjUfuv2EYkr6O0o+Pj6vZbGp9fV3JZFKxWEyJREKbm5u6ceOGFhYWZFmWEomEhoaGNDAwoFKppE8//VTLy8tqt9tyuVzq7+/XxYsXdXBwoF//+teyLEt//ud/rlqtpj/+8Y/KZrNqt9v2fthsNuVyuXTs2DENDw/r4sWLmp2dVbPZ1NTUlL766ivdv39fPp9P2WxW/+2//TfNz8+rVqup2WzagfuHQ/fPMpcAAAAAAAAAAAAAAAAAAAAAAAAAAAA4ioA1AAAAAAAAAAAAAAAAAAAAAAAAAADAS3IYIH2YaZrqdrsyDEOnT5/WzMyMOp2OFhYWlMlkVK/XZVmWlpeX7cD08/RgCDQQCMg0Te3s7NgR2Iffm81mlUwm1dfXp3q9LqfTqYGBAY2PjyscDuvu3bsKBoN699139bd/+7fa39/Xb37zGx0cHOjmzZt68803NTQ0JJ/Pp8uXL2tra+upY73fJRQKaXp6Wh6PR/v7+6pUKjJNU263W8lkUjMzM9rb29Py8rLu3r2rvr4+ORwONZtNeb1eDQ4OanZ2VtVqVVtbW5qcnDwSdJW+vqcej0c9PT3qdrtaW1vT/v6+Op2O/Z6ZmRlFIhG1221du3ZN29vbOn78uC5evKhUKqWdnR390z/9k0KhkM6ePav33ntPp06d0v3793X16lXt7OzI4XDI7Xar3W6rXq8fCcB2Oh2VSiUtLi7qwoULqlarqlQqOnnypAzD0K9//Wvt7Oyop6dHFy9e1IcffqhwOKzl5WXt7u4+cRDdMAyZpqlMJqNqtare3l6l02kNDAwoFArJNE0lEgn19/crHA5rYWFBd+/elWVZOjg4kGEY+slPfqJ/9a/+lfL5vNbW1nTlyhU1m0253W4tLi7aEfHLly/rpz/9qf76r/9a9XpdmUxGkpRMJuXz+XTz5k19/vnnR+LC3/acfZvDMHsymdTBwYF2d3ePPBOHYfljx47J4/Hos88+s8Pct2/flmmaGhkZ0U9+8hNFo1H99re/VT6fV7fbldfr1cDAgNxut0zTVG9vr0qlkpaWlhQKhfTOO+9oeHhYxWJRH330kU6ePKl0Ov1UUfFDLpdLyWRSoVBI169fl9fr1cmTJ/WTn/xE8/PzKhQKOnbsmDY2Np45yHzINE0NDQ1penpan3/+uXZ3d+2o9+joqCTZ8fiRkRHF43EdHBxoeXlZlmUpGAwqFovZz01/f78CgYB2d3f13nvvqdlsyuPxaG5uTlNTU3K5XMrn89rc3LSfB+nr/alYLKparSqZTGpqakqpVEqTk5Pa2dnRxx9/rFKpJElyOp1KpVJ2/Pn06dPa3d3VzZs3Va1WlUgkND4+rkqlor29PTUajecyV4fcbrdCoZAMw5DL5dLIyIg8Ho9u3bqlcrn8yPsP13UwGFRfX582NzeVz+c1MzMjj8ejXC6n69eva21tTY1GQ8FgUD09PYpGo8pms/r888/1+eefq1ar2ZHz2dlZhcNhra+v68SJEzp9+rRSqZT+8Ic/aHt7245OH8pms5Kk999/X06nU+12W8vLy9rZ2dE//MM/aHV1VdFoVNPT07p//75WV1dVKpWO7IfPI14NAAAAAAAAAAAAAAAAAAAAAAAAAACAb0fAGgAAAAAAAAAAAAAAAAAAAAAAAAAA4BXTbreVyWR0//59jY2NKZ/Pa319Xd1uV+FwWMFgUJlMxg6KviiHUdNOp6NisfhIZLTT6ahQKGhpaUlvv/22fv7zn6tSqcjtdsuyLK2vr+vTTz9VqVTSyMiIgsGgms2mPv/8c62srMiyLF26dEmFQkFer1crKyu6d++eqtXqI8Hg58Hn88k0Td29e1fz8/Mql8vqdDpKp9O6c+eOfD6flpeXtba2JkkaGBiQ1+vVuXPnND09raGhIa2srOjGjRuKRCLyer3y+XyKRCKqVCr2mAOBgMLhsNLptFZWVlQoFGRZltLptK5du6Z0Oq1CoaDV1VXt7+/LMAz96le/0o0bN3RwcKCtrS2Vy2X19fXpk08+kc/n0/z8vO7fv698Pi/LsmSapizLUrlcVq1Wk9vtVrValfT1+tnf39fvf/97vfXWW3rrrbfUaDS0uLio69eva29vT5ZlaWdnR5cvX1Ymk5HD4dDS0pK2traeOGLc7XaPRIOr1arW1tZ05swZ/eIXv1Cj0VAul9Pq6qqWlpZUKpXUbrfV7XbV6XTkcrlUKBSUSCSUz+eVTqdVLpcVi8Xs9XUYzl1fX9f/+T//R729vUomk/J4PGo2m5qfn1c6nVYul1OlUnniCPeD/H6/pqenFYlEtLu7+0gk3uFwKBaL6dixY8pkMrp+/bqcTqecTqfeeustDQ8Pa2JiQhsbG/r//r//z17rkuyA8+DgoEqlku7evaudnR1NT0/rvffe04ULF3Tt2jV98sknKhQK6nQ6dqT7aXk8HiUSCbndbjmdTv30pz/V+Pi4rl69qo2NDZ05c0bFYvGR63wWfr9fs7OzcjqdunXrllqtlqSvn41EIqF6vS7TNJVKpRQIBPTxxx/r7t27KpfLMgxDbrdbkUhEkUhEx48fV7FYlNfr1YkTJ2QYhpaXl/Xuu+9qYWHBDiPfunVLS0tLqtfr9hputVrK5/Oq1Wo6deqUTp8+rUKhoJs3b+r69evK5XL2mF0ul/r6+pRMJvXGG2/o3r17+vTTT5XL5eT1ejU7O6uenh4tLCxob2/vucW+D3m9XkUiEQWDQUUiETUaDa2srGh5eflbz2UYhhKJhEKhkH3tbrdbmUxGN27csOPvPT09OnnypN59912FQiHdunVL8/PzKpVKMk1T4XBY4+PjCofDWlpa0uDgoNxut5rNpjKZjNbX1+2Iumma8vv9Gh4e1szMjFwul27evKnt7W07Ar69vW3HqpPJpB24P9wnHgyMP694NRFsAAAAAAAAAAAAAAAAAAAAAAAAAACAb0bAGgAAAAAAAAAAAAAAAAAAAAAAAAAA4CX4rijzYbT2k08+0RdffKFWq6VGoyGHwyG/3y/DMFSv1x8JPT/v8Xk8Hg0MDMg0TeXz+W+MqNZqNd29e1e1Wk29vb2SpGKxqIODA2WzWVUqFXU6HZXLZa2urqrT6ahUKtlB262tLWUyGZmmqUajYYeKX4RCoaCPPvpI7XZbu7u7dvx7e3tbmUxGhmGo0Wio1WrJ7XZra2tLw8PD6u/v1+7urj7//HPdv39fhUJB3W7XDvMexr0fjLJubGxoe3tby8vLqlQqarfbKhQKun37thYWFtRut9VoNGRZlgzD0OLiolZXV9VqtWRZlrrdrnZ2dvRP//RPMk1T1WpVzWbTvgeWZanZbKper8uyLLlcLvs6D4PSi4uL2t3dVTAYVLvdVrFYtMciSY1GQxsbG9rb27Ov/WnDz4fXbxiGSqWSrl27pp2dHTmdTlWrVWWzWRWLRTUaDfv8h1qtljY3N7Wzs6N2u23HrYvFou7cufNIkDidTiufz2tlZUWGYajT6difOxz/064hwzDU39+vkZERFQoFbWxsqFKpPPI+h8OhSqWizz//XOvr6/J4PJqfn9fx48cVDod1+fJlO6r94JoOhUKKRCLK5/P66quvdP36deXzee3v72t5eVmWZWljY0O5XE4Oh0O5XE4bGxtyu91PdT2H1+R2u5VMJjU4OKhKpaLPPvtM8/Pz6u3tldvt1sbGxiP35VlEIhGNjIxof39f+/v76nQ6Mk1TwWBQsVhMkUhEgUBAwWBQlUpFfr9f8XhcPp9PXq9XAwMDGhsbk9vt1vT0tKLRqNxut9bX1/XJJ5/I5XIpGAzaxzcMQ4ZhqFar2XuL9PV62dnZ0ccff6w7d+7INE0Vi0U7kn54zYef9/l8MgxDe3t7unHjhsrlsiSpr69PExMTqlQqWl9fV6lUei7z9OD3gMvlUigUsvfR+/fva3l52Q7TP6zb7crtdqu/v1/lcln3799XqVRSsVhUq9XS0NCQvY/HYjF5PB7VajVtb2/LNE2Njo4qGAwqFArJ7XarVCrps88+0+effy6/369Op6NTp05pdHRU1WpVpmkqEAhoYGBAJ0+eVF9fn4rFoi5duqS9vT15PB6dOnVKzWZTW1tbqlararfbcjgc8nq9arVa8nq9KhQK9vgfZ36cTqdcLpe63a6azeZzXacAAAAAAAAAAAAAAAAAAAAAAAAAAAA/BgSsAQAAAAAAAAAAAAAAAAAAAAAAAAAAXoLvClhLX4dXC4WCDMM4EvqsVCp2tPebgtLPc2xOp1OxWEytVssOuT6s2+2qUCjo7t27Wl5elvR1XLnVatkhYkmqVquq1WqPREsty/rWYz9v1WpVKysr6na7R8bWbDbtmPWhw7hzuVyW3+9XtVpVoVCwo+GFQkFXrlxRp9N5JCSey+V048YNSVK9XreDuoeh5Xq9fuRch2HWh8fQarWUz+e/8Vo6nY7S6bRu3bqlZrP5SGS52+2q0Wio0Wgol8vZn3lYq9U6Evx9Fofr5nBs+XzeXquWZX3reu12u7Is65F4drPZVKvVOjK3h6Hsb5qvbxrLk3I6nRobG5PH49H9+/e1v7//SDDXsizt7e3pd7/7nZrNpsrlsiqV/7+9u42x607s+/773zsPJIfDp6EokeJSFEmtVoS2K9mSu4KNOHGQYJ0GdV4ERooWdY0A+yYFUiBB4fZN0QAG2jdNXKQwYDhpN0VTx3DrxDDgIsZm7a7lzW5X+yRZlEhRJEVR88DhcGY4nCfeuf++4MxgRPFRnIc7l58PMOA955577v+c/zmHry6+N/Onf/qneeutt9JqtVavlTs/e+3atXz7299Oo9HIyMhIrl27llarlYWFhVy9ejXtdnv1mJeWlnLp0qXs2LHjse71hYWFjIyMZP/+/Zmfn8+FCxcyPDycubm5HDt2LIODg7l161aazea6PVNKKZmens7Fixdz48aN1FrTbrezsLCQWmuazWYuXryYt956K+12O729vXnppZdWnwdTU1P5sz/7s7z99ts5ePDganT+8uXLGR8fTykljUZj9Vmz4s7nS601c3NzGR4eztWrV5PkM8+mle0WFhby3nvvZXZ2NpOTkxkZGcnNmzfTbDZz6tSp7N69O2fPns0nn3yShYWFdTlPd+rr60uj0cjY2Fg++OCD1evvXrHnvr6+zM7O5u23387w8HAWFxdz7ty5DA0N5fjx4zl58mQmJydz+fLljIyM5NatWzl8+HBOnjyZ119/PbOzsxkZGcnZs2fz8ccf5+bNm2m32ymlpNlsZnBwMEeOHMnLL7+cZ599Nnv27MnQ0FBu3LiRc+fO5fz58xkfH0+r1crzzz+fnTt3ZnJyMleuXMnCwkLa7XauX7+eycnJPPvss/nKV76SH/7wh5mamsqtW7dWn4l3O75Go5Gnn346p06dysDAQD744IN89NFHdw1YrzwXAAAAAAAAAAAAAAAAAAD4LAFrAAAAAAAAAAAAAAAAAIAOdbco593inRthJWC6f//+zM7Orkama62fiQOvjSXfz6MERj9vgPh+Hib6vTLGlfDtwsLCaoR57fhbrVamp6fvuo+7xZXX+3hqrZmcnMzMzMxqIPpeNip0fj9LS0vrcq1uVpR2ZX727NmTkydPrkaq7wyDr4xpdnY28/Pzq2Hm5HacemJi4r4x3enp6Zw9eza11tWAb3L3kPhKtHlxcTFTU1Of+9gWFxdz5cqVTE1NpdVq5caNG6vXy8zMTJrNZg4ePJjdu3fn+vXrq2N/nGt2YmIib775ZiYnJ1fvhVprxsfH8+1vfzsDAwOZmprKjRs3UkpJb2/v6jYLCwuZm5vL4uJienp6snPnziTJ3Nxc5ubmVse+Mr4HXSN3BtLvtX2tNWNjY6sR7evXr2dhYSFHjx7N8ePHMzU1lQsXLmR6enpd76mV8czMzOTChQtJkpGRkVy4cCFzc3P3Pb75+fl8+OGHWVhYyOLiYmqtuXr1ar7zne/kvffeS7PZzOzsbKanp3Pz5s3UWjMyMpKPPvoou3btSqvVyvXr1zMxMZGbN2+uxqRXAuFnz55NT09PDh48mCNHjuT48eO5cuVKfvzjH+fcuXO5fv16Wq1WBgcH89RTT2VwcDCXL19ePY/tdjvXrl3L9773vbzyyis5ceJEDhw4kPHx8Vy9ejVXr17N2NhY5ubmPnVcpZQ8/fTTeeONN/L888+vnov7PVMErAEAAAAAAAAAAAAAAAAA7k7AGgAAAAAAAAAAAAAAAABgC2xEoHm9NZvN7N69O2NjY6vx0+TuEetutRJMfdzj3Yi46too73a3HtHk9XDkyJEcOnQoP/rRj3L16tVPRaXXjq3W+pmY7v3C1SvWztnDHOv8/HxGR0cfK5i8EmNfiQSvvX9HR0fzne98JzMzM5mdnV2363Rubi6XL1/+TPh9bm4uH3zwwWoU/s73157DtWHnO4/nYa+Thz2eUkr27NmTQ4cOZXJyMhMTE5mfn0+j0cgLL7yQPXv25P3338/IyEgWFhYead8Pa25uLmfOnMnFixczNzeX6enpB0bgW61WpqenPzWWhYWFjIyMZGxsbHXd0tJS2u12SimZn5/PxMRESimrce+7zcPS0lImJiby4x//OM8880yOHDmS0dHRfPe7383777+/GkRvNBrZt29fvvCFL6TRaOTDDz/M5OTkagx7dnY2Z8+ezdTUVPbt25fe3t7cuHEj09PTn4qpr3XgwIG89tprOX36dEZGRvLuu+/m2rVrDzwfAAAAAAAAAAAAAAAAAAB8loA1AAAAAAAAAAAAAAAAAACfUUpJX19fdu3alZs3b65GW6Fb7dq1K6+++moajUaGh4czNTW1bgHzx7Ee0d57xZbn5uby/vvvp91ur2sc+G6B7yRpt9urz5KVc/qgEPS93l+vgHQpJXv37s1LL72Ua9euZXJyMvPz86m15sCBA3n55ZczPT2dCxcuZHp6+jOx5/XSbrdz/fr1XL9+/aFi6Mndz8HK+FZC3yuh6pVtl5aWPhWNvt/3rASyDx06lNnZ2fzkJz/JmTNnVuPatdb09PTk8OHDGRoaytjYWD766KMsLCyk1ro6lhs3bmRubi6NRiM9PT2rIfdWq/WpYHkpJYODg3n11Vdz+vTpXL16Nd/73vdy6dIl/wcBAAAAAAAAAAAAAAAAAHxOAtYAAAAAAAAAAAAAAAAAAFtgK4O4D6PZbGZwcDDNZjOzs7Npt9tbPaRN0enz0q22+rz39fXlxIkTOXHiRD755JOMjIxkcXHxsfe7EudtNBobEj3+PO4817du3brnexupE85HKSW7d+/OqVOn0tvbmytXruTmzZtJkh07duTUqVMZGhrKm2++mfHx8dy6dWvdxr12Pyvn/XGes3cb171C2Guj0Xez9jrYsWNH9u3bl4sXL+bdd9/9VNi92WzmwIEDOXr0aGqt+eCDDzI5Obkat175jqWlpU+Fv+/2vStzcfr06Xzxi1/MtWvX8v3vfz/nzp3L3NzcI54NAAAAAAAAAAAAAAAAAABWCFgDAAAAAAAAAAAAAAAAAPAppZT09/fn4MGDuXXrVmZmZjble+8WdN1qnTIONk6z2czQ0FBeeeWV9PX15fz585mamuqIwPJ66abreL2OpZSSgYGBHDt2LAcPHsw777yTmZmZ1FrTaDSyf//+nDx5MteuXcv58+czOzu7Lt+7GVau3fudq4e5vpvNZvbs2ZNms5kLFy6sxqtXztHAwECee+657Nu3L1euXMmFCxfuGfl+UDR7165dOX78eE6ePJmJiYm88847uXDhwgPj1feKdAMAAAAAAAAAAAAAAAAAcJuANQAAAAAAAAAAAAAAAADAJuv0mOxKwPrAgQOZmZnJ9PT0po+h1trx54nu0N/fn5MnT+bFF1/M9PR0rly5krm5uXW5/lb28TBBYTZXX19fnnnmmRw+fDgjIyMZHR1dnaf+/v4cP348+/bty9mzZzM+Pp5Wq7XtQsmP+xzt6+vLgQMH0mg0MjMz86lz0NPTk0OHDuXZZ5/N/Px8zp07l4mJifuGqu81lt7e3hw6dChHjx7N9evXc+7cudX7EAAAAAAAAAAAAAAAAACAxyNgDQAAAAAAAAAAAAAAAADAp6wErAcHBzM2NpYbN25s9ZA21J2h1fWMDK/dt3hxZ9q9e3e+9KUvZffu3XnnnXdy7dq1z8SKP+/cmf/1s54R8Eajkb179+bYsWNZWlrKhQsXcuvWrdX3n3rqqbz00kurYeaZmZm02+3H/t7Nsl7X2q5du3L8+PG02+3V4y+lpNlsZmhoKM8//3x27NiRS5cu5aOPPsri4uJ993evqPXevXtz6NChzMzM5KOPPsro6GgWFhYeepzbLSwOAAAAAAAAAAAAAAAAALCZGls9AAAAAAAAAAAAAAAAAACAJ02nh2xLKdm1a1cGBgZy9erVzM/Pb9r3rv2DzdDX15f9+/fnk08+yfvvv5+bN29u9ZC4w3oHint6enLo0KEcOHAgV69e/dSc9/X15cUXX8zBgwdz4cKFjI6OfipuvV7W61lXa32k8/Ow26+EpV944YXs2rVr9TM9PT0ZGhrK6dOnc/To0UxOTubSpUuZmpr6XPPUbDYzMDCQmZmZnDt3LiMjI48Ur145JgAAAAAAAAAAAAAAAAAA7q5nqwcAAAAAAAAAAAAAAAAAAEBnaTab2bNnT/r6+jI+Pp5Wq5Wk88Pb3F8pRej1Lubm5nLx4sVcvnw5Fy9efOR4LttPf39/vvCFL6TZbGZiYiJLS0ur7w0NDeWVV17J5ORkPvzww8zNzW3hSDfe/Z4LO3fuzDPPPJOPP/54NTT91FNP5eWXX86RI0fyySef5MyZMxkdHU2r1frcz5eJiYnVUPjauQAAAAAAAAAAAAAAAAAA4PEJWAMAAAAAAAAAAAAAAAAAbLJODkGXUtLf35+hoaGUUjIxMbEasO5WD5qPlfc/T5y1k+d6s9x53jrtnFy/fj1/9Ed/lIWFhU9FeNdjnJ12rNvVep7HRqOR/v7+PP300xkdHc3k5OSn3jt16lSOHDmSP//zP1+NKndy+P1uAeq1y49z7mZmZpIkR44cyfHjxzM4OJgvfvGL2bFjR9599928/fbbGR8fXz1HK9/7KOer1Wrlxo0bn3uMAAAAAAAAAAAAAAAAAADcn4A1AAAAAAAAAAAAAAAAAMAm6+SobU9PT/bs2ZNDhw4lSaanpzs63roZuuX4t+I4tsO5a7fbq6Feul8pJTt27MjevXtz5cqVzM/Pr16nu3btyle/+tVMTEzk7NmzWVhY2OLRPtij3mN3C17fy/j4eN5999389E//dI4cOZJSSs6dO5c333wzly5dyszMTJaWlrbFfQ4AAAAAAAAAAAAAAAAA8KQSsAYAAAAAAAAAAAAAAAAAIMntsOmuXbty7Nix7N27N6Ojo1lcXHzoz/f29mZpaSntdnsDR8l21snxdp4MjUYjO3bsyOLiYqamplbjy729vTlx4kSeeeaZ/OEf/mGmp6e3fZz5ce+3hYWFfPOb38z4+Hh6e3tz8eLFfPLJJ5mens6tW7fSbrc/c3428x6vtW7r+QEAAAAAAAAAAAAAAAAA2AwC1gAAAAAAAAAAAAAAAAAAm6hTA76llPT09GRwcDBHjhzJrl27Mj4+nlar9dD72O6xV9Zfp17vPLmazWZ6enoyNTWVxcXFNBqNtNvtHDhwIK+//npmZmZy/vz5LC0tbfVQP7dSymrc+X734Mp7K9uvVWtNq9XK8PBwrl69mlJK2u12lpaW7hquXvu5zeT/HAAAAAAAAAAAAAAAAACA+xOwBgAAAAAAAAAAAAAAAABgNXTa39+fHTt25ObNm/nkk0/Sbrcfeh+Psi3AZlsJNbdarczNzWVoaCg7d+7M4uJiTp06lePHj+edd97JtWvXtnXAeq27RazXLt8tXr3W0tLS6rl40LYAAAAAAAAAAAAAAAAAAHQeAWsAAAAAAAAAAAAAAAAAgE10Z0h0PawNij7O/lutVq5fv55z586l1prh4eH1GB5AR6i1ZmlpKfPz8+nv788zzzyToaGhzM3N5fTp01lYWMiZM2eyuLi41UN9aHeLSt9r+W7/P7Tb7c+su1ekuhPj1Z04JgAAAAAAAAAAAAAAAACATiJgDQAAAAAAAAAAAAAAAABAktsh04mJibz11luroVeAbtJut3Pz5s0sLS3l5MmTuXTpUlqtVr70pS/lRz/6UYaHh+8adV5rbTT5blHojXRnsPpRAs53jvtRPvuo2wMAAAAAAAAAAAAAAAAA0BkErAEAAAAAAAAAAAAAAAAANtFGxE7Xe5+tVmtd98dnrYRgNzt+C0+6WmsWFhZy7dq1HDlyJCdPnszAwEB6e3vz7rvvZnp6estCzQ8KY6/n8+JRj1G8GgAAAAAAAAAAAAAAAABgexKwBgAAAAAAAAAAAAAAAAAA4ImxuLiYDz74IJcvX87rr7+egYGB/OAHP8j58+fTarW6Mta8Er/upmNbz6A3AAAAAAAAAAAAAAAAAEC3amz1AAAAAAAAAAAAAAAAAAAAgI3XTeFaeBy11szMzOTMmTM5cOBA5ubm8q1vfSs3b95cvU9qrfe8Z0opq3/rOaaH2eZx7uNuewZ02/EAAAAAAAAAAAAAAAAAAGyE4keZAAAAAAAAAAAAAAAAALB9lVL8UHAbKaWk2Wxu9TDocGt//7tRgdz13C9sN81mMzt37syRI0fy0ksvZXR0NG+//Xbm5uY+FbDeTPeLZT+qlc887DFs12dDu91Ou93e6mE8UWqt2+cCAQAAAAAAAAAAAAAAAACSCFgDAAAAAAAAAAAAAAAAwLYmYL29CFjzMFZ+/7veIdmN2i9sN41GI81mM319fdm5c2fm5+czOzubWuumhqvvFY5ej6D0nZ+733Ftx4D1ylwJWG8uAWsAAAAAAAAAAAAAAAAA2H56tnoAAAAAAAAAAAAAAAAAANDNSikXk9xIspSkVWt9rZRyIMm/SnI8ycUkv1xrvV5uVyN/I8nfSDKb5L+otf5gK8YNbJ2dO3dmz549mZ+fz40bN9YtqLtdwrSb5UHn1fnqXrXWLC0tZX5+PouLi6sR5M2MV2+0JyFY303zBQAAAAAAAAAAAAAAAACwURpbPQAAAAAAAAAAAAAAAAAAeAL8lVrrK7XW15aXfy3JN2utLyT55vJykvxikheW/76e5Dc3faRsqG4OiW61bjm3u3fvzuuvv56f//mfzzPPPJNms7lh31VrFYDN7Wtn9+7d2bNnT/r6+rZ6OGywlWdFrTXtdjutVivtdntL74U7n1+llNW/x/Uw9/l6fh8AAAAAAAAAAAAAAAAAAJ1FwBoAAAAAAAAAAAAAAAAANt8vJfnG8utvJPlba9b/i3rbv0+yr5RyeAvGxwbZ7DjoSri0myPFzWYz+/bty+HDhzMwMLCtA6zNZjMvvvhifvZnfzbHjh3blKhuo/Fk/9y4lJJGo5GXXnopzz33XHbu3Nkx56TRaGzr67lT3flc3Irn5J3f1+3P6Y3inAEAAAAAAAAAAAAAAAAAPFhn/HoaAAAAAAAAAAAAAAAAALpXTfJvSylvlVK+vrzu6Vrr8PLrkSRPL79+NsnlNZ/9eHkdbIlSSvr7+zMwMJBms7nVw7mrgYGBnD59Ol/+8pezb9++jokPfx67d+/OqVOnMjg4mMXFxczMzKTdbm/1sLrWShx6cHAwb7zmapRSAAAWLElEQVTxRvbu3fuZ97ZCb29vjh49mtdeey2Dg4MP3H7lPu3v7+/o638rQtEP0kljAQAAAAAAAAAAAAAAAACAjdCz1QMAAAAAAAAAAAAAAAAAgC73c7XWK6WUQ0n+uJTy3to3a621lPJIBc3lEPbXH7gh29LaoOpWRnSbzWb279+fEydOZP/+/fnJT36S4eHhB39wk5VS0mg0srS0lFartW2Dz41GI88991x27dqVGzdu5OzZs5ment7QwG4p5XPvv9lspre3NwsLC5/Zx86dO1NKyfz8/LrMRyklzWYzt27d+tS69VBKyd69e3PixIl85zvfuevxbKb+/v48//zzeeONN3Lo0KGMjY1lenr6ntv39fXl8OHDOXbsWJaWlvLRRx9lbGwsi4uLmzjqB1s5p319fRkYGMjS0lJmZ2eztLTUMc88tg/hcQAAAAAAAAAAAAAAAACAhydgDQAAAAAAAAAAAAAAAAAbqNZ6ZfnfsVLK7yf5mSSjpZTDtdbhUsrhJGPLm19J8oU1Hz+6vO7Off5Wkt9KkkeNX9O51gY5a62PFRd+0P7vZyUWvH///rz00kv54he/mMHBwYyOjmZkZKSjAtGllMzNzeX8+fNpNpuZmppaPc71OHfrPQf3+o5SSgYGBnLy5Mn09PRkeHg4f/EXf5G5ubnH+v6VGPB6HkMpJf39/Tl69GgGBwfz3nvvZX5+fvX9/v7+vPjii6m15ty5c5mdnV2XY2g0GknW795Y2W+z2cyBAweSJDdu3Eir1Vr9js22Y8eOHD16NF/+8pezZ8+e9Pb2ZmBg4L7bnzhxIidPnsxTTz2V5HYgem5uLteuXdusYT+0nTt35tSpUzl8+HCmp6fz3nvvZWpq6pH3c+fcb8fo9XYcc6cRsQYAAAAAAAAAAAAAAAAAeDgC1gAAAAAAAAAAAAAAAACwQUopA0katdYby6//epJ/lOQPkvxKkv9h+d9/s/yRP0jyX5ZSfifJf5hkqtY6vPkjZ6O02+17hkvvjHE+SpxzvULLK/tZiQUvLCzk/PnzqbVmcnIy7Xa74wLWCwsLGR0dTaPRSKvVWh3fegSO1zOGfb/vWfmu0dHRTE1NZXR0NMPDw1laWuq4gPXKtdHT05Oents/VV57TZRS0tPTszoX7Xb7sY+hlJJbt26t29yu7HdlXzMzM/mTP/mTjI2NrQasNzuOu3KcjUYj4+PjOXPmTHbv3p2JiYn73nM9PT2ZnJzM8PBw+vr6cvPmzSwtLXXUfZpk9dj6+/uTZPUcr/172OfY2m0e99m3GZF6NoZ5AwAAAAAAAAAAAAAAAAB4OMUPMwEAAAAAAAAAAAAAAABgY5RSTiT5/eXFniT/stb666WUoSS/m+RYkktJfrnWOlFuF1X/aZKvJZlN8qu11u8/4Dv8UBCAbWFtsN3v3GH7qbWWrR4DAAAAAAAAAAAAAAAAAPBoBKwBAAAAAAAAAAAAAAAAYBsTsAYAYDMIWAMAAAAAAAAAAAAAAADA9tPY6gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwvgSsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuoyANQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJcRsAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgyAtYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABdRsAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgywhYAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdBkBawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgC4jYA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBlBKwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6jIA1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlxGwBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6DIC1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF1GwBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDLCFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0GQFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALiNgDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GUErAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALqMgDUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECXEbAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoMgLWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXUbAGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoMsIWAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQZAWsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAuI2ANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQZQSsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuoyANQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJcRsAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgyAtYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABdRsAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgywhYAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdBkBawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgC4jYA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBlBKwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6jIA1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlxGwBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6DIC1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF1GwBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDLCFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0GQFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALiNgDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GUErAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALqMgDUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECXEbAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoMgLWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXUbAGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoMsIWAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQZAWsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAuI2ANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQZQSsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuoyANQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJcRsAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgyAtYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABdRsAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgywhYAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdBkBawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgC4jYA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBlBKwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6jIA1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlxGwBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6DIC1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF1GwBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDLCFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0GQFrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALiNgDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GUErAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALqMgDUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECXEbAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoMgLWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXUbAGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoMsIWAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQZAWsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAuI2ANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQZQSsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAukzPVg8AAAAAAAAAAAAAAAAAAHgsM0ne3+pBcF8Hk4xv9SC4J/PT+cxR5zNHnc38dL7tMEfPbfUAAAAAAAAAAAAAAAAAAIBHJ2ANAAAAAAAAAAAAAAAAANvb+7XW17Z6ENxbKeX75qhzmZ/OZ446nznqbOan85kjAAAAAAAAAAAAAAAAAGCjNLZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKwvAWsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAuI2ANAAAAAAAAAAAAAAAAANvbb231AHggc9TZzE/nM0edzxx1NvPT+cwRAAAAAAAAAAAAAAAAALAhSq11q8cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAOmps9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYXwLWAAAAAAAAAAAAAAAAALBNlVK+Vkp5v5TyQSnl17Z6PE+iUso/L6WMlVLeWbPuQCnlj0sp55b/3b+8vpRS/ufl+fpJKeWntm7kT45SyhdKKd8qpbxbSvmLUsrfX15vnjpAKWVHKeV7pZQfL8/Pf7+8/vlSyneX5+FflVL6ltf3Ly9/sPz+8S09gCdIKaVZSvlhKeUPl5fNUQcppVwspbxdSvlRKeX7y+s85zpEKWVfKeX3SinvlVLOlFLeMD8AAAAAAAAAAAAAAAAAwGYQsAYAAAAAAAAAAAAAAACAbaiU0kzyvyT5xSSnk/wnpZTTWzuqJ9L/luRrd6z7tSTfrLW+kOSby8vJ7bl6Yfnv60l+c5PG+KRrJfkHtdbTSb6a5O8t3yvmqTMsJPmFWutXkryS5GullK8m+R+T/ONa66kk15P83eXt/26S68vr//HydmyOv5/kzJplc9R5/kqt9ZVa62vLy55zneM3kvw/tdYvJflKbt9L5gcAAAAAAAAAAAAAAAAA2HAC1gAAAAAAAAAAAAAAAACwPf1Mkg9qrR/WWheT/E6SX9riMT1xaq3/b5KJO1b/UpJvLL/+RpK/tWb9v6i3/fsk+0ophzdloE+wWutwrfUHy69v5HY09NmYp46wfJ5nlhd7l/9qkl9I8nvL6++cn5V5+70kf7WUUjZntE+uUsrRJP9Rkt9eXi4xR9uB51wHKKXsTfKXkvyzJKm1LtZaJ2N+AAAAAAAAAAAAAAAAAIBNIGANAAAAAAAAAAAAAAAAANvTs0kur1n+eHkdW+/pWuvw8uuRJE8vvzZnW6yUcjzJq0m+G/PUMUopzVLKj5KMJfnjJOeTTNZaW8ubrJ2D1flZfn8qydCmDvjJ9E+S/NdJ2svLQzFHnaYm+bellLdKKV9fXuc51xmeT3I1yf9aSvlhKeW3SykDMT8AAAAAAAAAAAAAAAAAwCYQsAYAAAAAAAAAAAAAAAAA2CC11prbUVG2WClld5L/K8l/VWudXvueedpatdalWusrSY4m+ZkkX9raEbFWKeVvJhmrtb611WPhvn6u1vpTSX4xyd8rpfyltW96zm2pniQ/leQ3a62vJrmZ5NfWbmB+AAAAAAAAAAAAAAAAAICNImANAAAAAAAAAAAAAAAAANvTlSRfWLN8dHkdW2+0lHI4SZb/HVteb862SCmlN7fj1f9HrfX/Xl5tnjpMrXUyybeSvJFkXymlZ/mttXOwOj/L7+9Ncm1zR/rE+dkk/3Ep5WKS30nyC0l+I+aoo9Raryz/O5bk93M7Bu851xk+TvJxrfW7y8u/l9tBa/MDAAAAAAAAAAAAAAAAAGw4AWsAAAAAAAAAAAAAAAAA2J7+vyQvlFKeL6X0Jfk7Sf5gi8fEbX+Q5FeWX/9Kkn+zZv1/Xm77apKpWuvwVgzwSVJKKUn+WZIztdb/ac1b5qkDlFKeKqXsW369M8lfS3Imt0PWf3t5szvnZ2Xe/naSf1drrZs24CdQrfW/qbUerbUez+3/a/5drfU/jTnqGKWUgVLK4MrrJH89yTvxnOsItdaRJJdLKS8ur/qrSd6N+QEAAAAAAAAAAAAAAAAANkHxW18AAAAAAAAAAAAAAAAA2J5KKX8jyT9J0kzyz2utv761I3rylFL+zyR/OcnBJKNJ/rsk/zrJ7yY5luRSkl+utU4sh5T/aZKvJZlN8qu11u9vwbCfKKWUn0vy7SRvJ2kvr/5vk3w35mnLlVL+gyTfyO3nWCPJ79Za/1Ep5USS30lyIMkPk/xntdaFUsqOJP97kleTTCT5O7XWD7dm9E+eUspfTvIPa61/0xx1juW5+P3lxZ4k/7LW+uullKF4znWEUsorSX47SV+SD5P8apafeTE/AAAAAAAAAAAAAAAAAMAGErAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoMo2tHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrS8AaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgywhYAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdBkBawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgC4jYA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBlBKwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6jIA1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAlxGwBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6DL/P8Jp6c5LuXKaAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 864x864 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"_plot(x[0], vmax=1, title=datamodule.mapping.get_text(y))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "edd0e44b-b383-4117-83ca-0bfd7e5235aa",
"metadata": {},
"outputs": [],
"source": [
"datamodule.mapping[\"<p>\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3480ae5f-9cec-4814-98fe-02082a139add",
"metadata": {},
"outputs": [],
"source": [
"y[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6c62572f",
"metadata": {},
"outputs": [],
"source": [
"_plot(x[0, 0], vmax=1, title=convert_y_label_to_string(y[0], datamodule.mapping))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e7778ae2",
"metadata": {},
"outputs": [],
"source": [
"# Training\n",
"\n",
"for _ in range(5):\n",
" i = random.randint(0, len(dataset.data_train))\n",
" x, y = dataset.data_train[i]\n",
" _plot(x[0], vmax=1, title=convert_y_label_to_string(y, dataset.mapping))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dbf845a5",
"metadata": {},
"outputs": [],
"source": [
"from einops import rearrange"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fe4bfb95",
"metadata": {},
"outputs": [],
"source": [
"x, y = dataset.data_train[2]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0ba4dec",
"metadata": {},
"outputs": [],
"source": [
"_plot(x[0], vmax=1, title=convert_y_label_to_string(y, dataset.mapping))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "34348d0e",
"metadata": {},
"outputs": [],
"source": [
"p = 32\n",
"patches = rearrange(x.unsqueeze(0), 'b c (h p1) (w p2) -> b c (h w) p1 p2', p1 = p, p2 = p)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "77bded74",
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure(figsize=(20, 20))\n",
"for i in range(15):\n",
" ax = fig.add_subplot(1, 15, i + 1)\n",
" ax.imshow(patches[0, 0, i + 160, :, :].squeeze(0), cmap='gray')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9d11ca56",
"metadata": {},
"outputs": [],
"source": [
"# Testing\n",
"\n",
"for _ in range(5):\n",
" i = random.randint(0, len(dataset.data_test))\n",
" x, y = dataset.data_test[i]\n",
" _plot(x[0], vmax=1, title=convert_y_label_to_string(y, dataset.mapping))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "548d10da",
"metadata": {},
"outputs": [],
"source": [
"dataset = IAMSyntheticParagraphs()\n",
"dataset.prepare_data()\n",
"dataset.setup()\n",
"print(dataset)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "627730b5",
"metadata": {},
"outputs": [],
"source": [
"# Training\n",
"\n",
"for _ in range(5):\n",
" i = random.randint(0, len(dataset.data_train))\n",
" x, y = dataset.data_train[i]\n",
" _plot(x[0], vmax=1, title=convert_y_label_to_string(y, dataset.mapping))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4150722e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|