summaryrefslogtreecommitdiff
path: root/src/text_recognizer/datasets/transforms.py
blob: 8deac7f2ccc0997bce37e1a6e5ad0f37ff6886da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""Transforms for PyTorch datasets."""
import numpy as np
from PIL import Image
import torch
from torch import Tensor
from torchvision.transforms import Compose, Resize, ToPILImage, ToTensor

from text_recognizer.datasets.util import EmnistMapper


class Transpose:
    """Transposes the EMNIST image to the correct orientation."""

    def __call__(self, image: Image) -> np.ndarray:
        """Swaps axis."""
        return np.array(image).swapaxes(0, 1)


class AddTokens:
    """Adds start of sequence and end of sequence tokens to target tensor."""

    def __init__(self, pad_token: str, eos_token: str, init_token: str = None) -> None:
        self.init_token = init_token
        self.pad_token = pad_token
        self.eos_token = eos_token
        if self.init_token is not None:
            self.emnist_mapper = EmnistMapper(
                init_token=self.init_token,
                pad_token=self.pad_token,
                eos_token=self.eos_token,
            )
        else:
            self.emnist_mapper = EmnistMapper(
                pad_token=self.pad_token, eos_token=self.eos_token,
            )
        self.pad_value = self.emnist_mapper(self.pad_token)
        self.eos_value = self.emnist_mapper(self.eos_token)

    def __call__(self, target: Tensor) -> Tensor:
        """Adds a sos token to the begining and a eos token to the end of a target sequence."""
        dtype, device = target.dtype, target.device

        # Find the where padding starts.
        pad_index = torch.nonzero(target == self.pad_value, as_tuple=False)[0].item()

        target[pad_index] = self.eos_value

        if self.init_token is not None:
            self.sos_value = self.emnist_mapper(self.init_token)
            sos = torch.tensor([self.sos_value], dtype=dtype, device=device)
            target = torch.cat([sos, target], dim=0)

        return target