1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
|
"""Abstract Model class for PyTorch neural networks."""
from abc import ABC, abstractmethod
from glob import glob
import importlib
from pathlib import Path
import re
import shutil
from typing import Callable, Dict, List, Optional, Tuple, Type, Union
from loguru import logger
import torch
from torch import nn
from torch import Tensor
from torch.optim.swa_utils import AveragedModel, SWALR
from torch.utils.data import DataLoader, Dataset, random_split
from torchsummary import summary
from text_recognizer import datasets
from text_recognizer import networks
from text_recognizer.datasets import EmnistMapper
WEIGHT_DIRNAME = Path(__file__).parents[1].resolve() / "weights"
class Model(ABC):
"""Abstract Model class with composition of different parts defining a PyTorch neural network."""
def __init__(
self,
network_fn: str,
dataset: str,
network_args: Optional[Dict] = None,
dataset_args: Optional[Dict] = None,
metrics: Optional[Dict] = None,
criterion: Optional[Callable] = None,
criterion_args: Optional[Dict] = None,
optimizer: Optional[Callable] = None,
optimizer_args: Optional[Dict] = None,
lr_scheduler: Optional[Callable] = None,
lr_scheduler_args: Optional[Dict] = None,
swa_args: Optional[Dict] = None,
device: Optional[str] = None,
) -> None:
"""Base class, to be inherited by model for specific type of data.
Args:
network_fn (str): The name of network.
dataset (str): The name dataset class.
network_args (Optional[Dict]): Arguments for the network. Defaults to None.
dataset_args (Optional[Dict]): Arguments for the dataset.
metrics (Optional[Dict]): Metrics to evaluate the performance with. Defaults to None.
criterion (Optional[Callable]): The criterion to evaluate the performance of the network.
Defaults to None.
criterion_args (Optional[Dict]): Dict of arguments for criterion. Defaults to None.
optimizer (Optional[Callable]): The optimizer for updating the weights. Defaults to None.
optimizer_args (Optional[Dict]): Dict of arguments for optimizer. Defaults to None.
lr_scheduler (Optional[Callable]): A PyTorch learning rate scheduler. Defaults to None.
lr_scheduler_args (Optional[Dict]): Dict of arguments for learning rate scheduler. Defaults to
None.
swa_args (Optional[Dict]): Dict of arguments for stochastic weight averaging. Defaults to
None.
device (Optional[str]): Name of the device to train on. Defaults to None.
"""
self._name = f"{self.__class__.__name__}_{dataset}_{network_fn}"
# Has to be set in subclass.
self._mapper = None
# Placeholder.
self._input_shape = None
self.dataset_name = dataset
self.dataset = None
self.dataset_args = dataset_args
# Placeholders for datasets.
self.train_dataset = None
self.val_dataset = None
self.test_dataset = None
# Stochastic Weight Averaging placeholders.
self.swa_args = swa_args
self._swa_scheduler = None
self._swa_network = None
self._use_swa_model = False
# Experiment directory.
self.model_dir = None
# Flag for configured model.
self.is_configured = False
self.data_prepared = False
# Flag for stopping training.
self.stop_training = False
self._metrics = metrics if metrics is not None else None
# Set the device.
self._device = (
torch.device("cuda" if torch.cuda.is_available() else "cpu")
if device is None
else device
)
# Configure network.
self._network = None
self._network_args = network_args
self._configure_network(network_fn)
# Place network on device (GPU).
self.to_device()
# Loss and Optimizer placeholders for before loading.
self._criterion = criterion
self.criterion_args = criterion_args
self._optimizer = optimizer
self.optimizer_args = optimizer_args
self._lr_scheduler = lr_scheduler
self.lr_scheduler_args = lr_scheduler_args
def configure_model(self) -> None:
"""Configures criterion and optimizers."""
if not self.is_configured:
self._configure_criterion()
self._configure_optimizers()
# Set this flag to true to prevent the model from configuring again.
self.is_configured = True
def prepare_data(self) -> None:
"""Prepare data for training."""
# TODO add downloading.
if not self.data_prepared:
# Load dataset module.
self.dataset = getattr(datasets, self.dataset_name)
# Load train dataset.
train_dataset = self.dataset(train=True, **self.dataset_args["args"])
train_dataset.load_or_generate_data()
# Set input shape.
self._input_shape = train_dataset.input_shape
# Split train dataset into a training and validation partition.
dataset_len = len(train_dataset)
train_len = int(
self.dataset_args["train_args"]["train_fraction"] * dataset_len
)
val_len = dataset_len - train_len
self.train_dataset, self.val_dataset = random_split(
train_dataset, lengths=[train_len, val_len]
)
# Load test dataset.
self.test_dataset = self.dataset(train=False, **self.dataset_args["args"])
self.test_dataset.load_or_generate_data()
# Set the flag to true to disable ability to load data again.
self.data_prepared = True
def train_dataloader(self) -> DataLoader:
"""Returns data loader for training set."""
return DataLoader(
self.train_dataset,
batch_size=self.dataset_args["train_args"]["batch_size"],
num_workers=self.dataset_args["train_args"]["num_workers"],
shuffle=True,
pin_memory=True,
)
def val_dataloader(self) -> DataLoader:
"""Returns data loader for validation set."""
return DataLoader(
self.val_dataset,
batch_size=self.dataset_args["train_args"]["batch_size"],
num_workers=self.dataset_args["train_args"]["num_workers"],
shuffle=True,
pin_memory=True,
)
def test_dataloader(self) -> DataLoader:
"""Returns data loader for test set."""
return DataLoader(
self.test_dataset,
batch_size=self.dataset_args["train_args"]["batch_size"],
num_workers=self.dataset_args["train_args"]["num_workers"],
shuffle=False,
pin_memory=True,
)
def _configure_network(self, network_fn: Type[nn.Module]) -> None:
"""Loads the network."""
# If no network arguments are given, load pretrained weights if they exist.
# Load network module.
network_fn = getattr(networks, network_fn)
if self._network_args is None:
self.load_weights(network_fn)
else:
self._network = network_fn(**self._network_args)
def _configure_criterion(self) -> None:
"""Loads the criterion."""
self._criterion = (
self._criterion(**self.criterion_args)
if self._criterion is not None
else None
)
def _configure_optimizers(self,) -> None:
"""Loads the optimizers."""
if self._optimizer is not None:
self._optimizer = self._optimizer(
self._network.parameters(), **self.optimizer_args
)
else:
self._optimizer = None
if self._optimizer and self._lr_scheduler is not None:
if "steps_per_epoch" in self.lr_scheduler_args:
self.lr_scheduler_args["steps_per_epoch"] = len(self.train_dataloader())
# Assume lr scheduler should update at each epoch if not specified.
if "interval" not in self.lr_scheduler_args:
interval = "epoch"
else:
interval = self.lr_scheduler_args.pop("interval")
self._lr_scheduler = {
"lr_scheduler": self._lr_scheduler(
self._optimizer, **self.lr_scheduler_args
),
"interval": interval,
}
if self.swa_args is not None:
self._swa_scheduler = {
"swa_scheduler": SWALR(self._optimizer, swa_lr=self.swa_args["lr"]),
"swa_start": self.swa_args["start"],
}
self._swa_network = AveragedModel(self._network).to(self.device)
@property
def name(self) -> str:
"""Returns the name of the model."""
return self._name
@property
def input_shape(self) -> Tuple[int, ...]:
"""The input shape."""
return self._input_shape
@property
def mapper(self) -> EmnistMapper:
"""Returns the mapper that maps between ints and chars."""
return self._mapper
@property
def mapping(self) -> Dict:
"""Returns the mapping between network output and Emnist character."""
return self._mapper.mapping if self._mapper is not None else None
def eval(self) -> None:
"""Sets the network to evaluation mode."""
self._network.eval()
def train(self) -> None:
"""Sets the network to train mode."""
self._network.train()
@property
def device(self) -> str:
"""Device where the weights are stored, i.e. cpu or cuda."""
return self._device
@property
def metrics(self) -> Optional[Dict]:
"""Metrics."""
return self._metrics
@property
def criterion(self) -> Optional[Callable]:
"""Criterion."""
return self._criterion
@property
def optimizer(self) -> Optional[Callable]:
"""Optimizer."""
return self._optimizer
@property
def lr_scheduler(self) -> Optional[Dict]:
"""Returns a directory with the learning rate scheduler."""
return self._lr_scheduler
@property
def swa_scheduler(self) -> Optional[Dict]:
"""Returns a directory with the stochastic weight averaging scheduler."""
return self._swa_scheduler
@property
def swa_network(self) -> Optional[Callable]:
"""Returns the stochastic weight averaging network."""
return self._swa_network
@property
def network(self) -> Type[nn.Module]:
"""Neural network."""
# Returns the SWA network if available.
return self._network
@property
def weights_filename(self) -> str:
"""Filepath to the network weights."""
WEIGHT_DIRNAME.mkdir(parents=True, exist_ok=True)
return str(WEIGHT_DIRNAME / f"{self._name}_weights.pt")
def use_swa_model(self) -> None:
"""Set to use predictions from SWA model."""
if self.swa_network is not None:
self._use_swa_model = True
def forward(self, x: Tensor) -> Tensor:
"""Feedforward pass with the network."""
if self._use_swa_model:
return self.swa_network(x)
else:
return self.network(x)
def summary(
self,
input_shape: Optional[Union[List, Tuple]] = None,
depth: int = 4,
device: Optional[str] = None,
) -> None:
"""Prints a summary of the network architecture."""
device = self.device if device is None else device
if input_shape is not None:
summary(self.network, input_shape, depth=depth, device=device)
elif self._input_shape is not None:
input_shape = tuple(self._input_shape)
summary(self.network, input_shape, depth=depth, device=device)
else:
logger.warning("Could not print summary as input shape is not set.")
def to_device(self) -> None:
"""Places the network on the device (GPU)."""
self._network.to(self._device)
def _get_state_dict(self) -> Dict:
"""Get the state dict of the model."""
state = {"model_state": self._network.state_dict()}
if self._optimizer is not None:
state["optimizer_state"] = self._optimizer.state_dict()
if self._lr_scheduler is not None:
state["scheduler_state"] = self._lr_scheduler["lr_scheduler"].state_dict()
state["scheduler_interval"] = self._lr_scheduler["interval"]
if self._swa_network is not None:
state["swa_network"] = self._swa_network.state_dict()
return state
def load_from_checkpoint(self, checkpoint_path: Union[str, Path]) -> None:
"""Load a previously saved checkpoint.
Args:
checkpoint_path (Path): Path to the experiment with the checkpoint.
"""
checkpoint_path = Path(checkpoint_path)
self.prepare_data()
self.configure_model()
logger.debug("Loading checkpoint...")
if not checkpoint_path.exists():
logger.debug("File does not exist {str(checkpoint_path)}")
checkpoint = torch.load(str(checkpoint_path), map_location=self.device)
self._network.load_state_dict(checkpoint["model_state"])
if self._optimizer is not None:
self._optimizer.load_state_dict(checkpoint["optimizer_state"])
if self._lr_scheduler is not None:
# Does not work when loading from previous checkpoint and trying to train beyond the last max epochs
# with OneCycleLR.
if self._lr_scheduler["lr_scheduler"].__class__.__name__ != "OneCycleLR":
self._lr_scheduler["lr_scheduler"].load_state_dict(
checkpoint["scheduler_state"]
)
self._lr_scheduler["interval"] = checkpoint["scheduler_interval"]
if self._swa_network is not None:
self._swa_network.load_state_dict(checkpoint["swa_network"])
def save_checkpoint(
self, checkpoint_path: Path, is_best: bool, epoch: int, val_metric: str
) -> None:
"""Saves a checkpoint of the model.
Args:
checkpoint_path (Path): Path to the experiment with the checkpoint.
is_best (bool): If it is the currently best model.
epoch (int): The epoch of the checkpoint.
val_metric (str): Validation metric.
"""
state = self._get_state_dict()
state["is_best"] = is_best
state["epoch"] = epoch
state["network_args"] = self._network_args
checkpoint_path.mkdir(parents=True, exist_ok=True)
logger.debug("Saving checkpoint...")
filepath = str(checkpoint_path / "last.pt")
torch.save(state, filepath)
if is_best:
logger.debug(
f"Found a new best {val_metric}. Saving best checkpoint and weights."
)
shutil.copyfile(filepath, str(checkpoint_path / "best.pt"))
def load_weights(self, network_fn: Optional[Type[nn.Module]] = None) -> None:
"""Load the network weights."""
logger.debug("Loading network with pretrained weights.")
filename = glob(self.weights_filename)[0]
if not filename:
raise FileNotFoundError(
f"Could not find any pretrained weights at {self.weights_filename}"
)
# Loading state directory.
state_dict = torch.load(filename, map_location=torch.device(self._device))
self._network_args = state_dict["network_args"]
weights = state_dict["model_state"]
# Initializes the network with trained weights.
if network_fn is not None:
self._network = network_fn(**self._network_args)
self._network.load_state_dict(weights)
if "swa_network" in state_dict:
self._swa_network = AveragedModel(self._network).to(self.device)
self._swa_network.load_state_dict(state_dict["swa_network"])
def save_weights(self, path: Path) -> None:
"""Save the network weights."""
logger.debug("Saving the best network weights.")
shutil.copyfile(str(path / "best.pt"), self.weights_filename)
|