blob: ff843cfd020f0c4d18684f969cda0f062051a463 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
"""Implementations of custom loss functions."""
from pytorch_metric_learning import distances, losses, miners, reducers
from torch import nn
from torch import Tensor
__all__ = ["EmbeddingLoss"]
class EmbeddingLoss:
"""Metric loss for training encoders to produce information-rich latent embeddings."""
def __init__(self, margin: float = 0.2, type_of_triplets: str = "semihard") -> None:
self.distance = distances.CosineSimilarity()
self.reducer = reducers.ThresholdReducer(low=0)
self.loss_fn = losses.TripletMarginLoss(
margin=margin, distance=self.distance, reducer=self.reducer
)
self.miner = miners.MultiSimilarityMiner(epsilon=margin, distance=self.distance)
def __call__(self, embeddings: Tensor, labels: Tensor) -> Tensor:
"""Computes the metric loss for the embeddings based on their labels.
Args:
embeddings (Tensor): The laten vectors encoded by the network.
labels (Tensor): Labels of the embeddings.
Returns:
Tensor: The metric loss for the embeddings.
"""
hard_pairs = self.miner(embeddings, labels)
loss = self.loss_fn(embeddings, labels, hard_pairs)
return loss
|