1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
|
"""Defines the Sparse MLP network."""
from typing import Callable, Dict, List, Optional, Union
import warnings
from einops.layers.torch import Rearrange
from pytorch_block_sparse import BlockSparseLinear
import torch
from torch import nn
from text_recognizer.networks.util import activation_function
warnings.filterwarnings("ignore", category=DeprecationWarning)
class SparseMLP(nn.Module):
"""Sparse multi layered perceptron network."""
def __init__(
self,
input_size: int = 784,
num_classes: int = 10,
hidden_size: Union[int, List] = 128,
num_layers: int = 3,
density: float = 0.1,
activation_fn: str = "relu",
) -> None:
"""Initialization of the MLP network.
Args:
input_size (int): The input shape of the network. Defaults to 784.
num_classes (int): Number of classes in the dataset. Defaults to 10.
hidden_size (Union[int, List]): The number of `neurons` in each hidden layer. Defaults to 128.
num_layers (int): The number of hidden layers. Defaults to 3.
density (float): The density of activation at each layer. Default to 0.1.
activation_fn (str): Name of the activation function in the hidden layers. Defaults to
relu.
"""
super().__init__()
activation_fn = activation_function(activation_fn)
if isinstance(hidden_size, int):
hidden_size = [hidden_size] * num_layers
self.layers = [
Rearrange("b c h w -> b (c h w)"),
nn.Linear(in_features=input_size, out_features=hidden_size[0]),
activation_fn,
]
for i in range(num_layers - 1):
self.layers += [
BlockSparseLinear(
in_features=hidden_size[i],
out_features=hidden_size[i + 1],
density=density,
),
activation_fn,
]
self.layers.append(
nn.Linear(in_features=hidden_size[-1], out_features=num_classes)
)
self.layers = nn.Sequential(*self.layers)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""The feedforward pass."""
# If batch dimenstion is missing, it needs to be added.
if len(x.shape) < 4:
x = x[(None,) * (4 - len(x.shape))]
return self.layers(x)
@property
def __name__(self) -> str:
"""Returns the name of the network."""
return "mlp"
|