summaryrefslogtreecommitdiff
path: root/src/training/run_experiment.py
blob: c133ce5fe3e7abaffb01bbe755c2d6d5bb1b75b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""Script to run experiments."""
from datetime import datetime
from glob import glob
import importlib
import json
import os
from pathlib import Path
import re
from typing import Callable, Dict, Tuple

import click
from loguru import logger
import torch
from tqdm import tqdm
from training.callbacks import CallbackList
from training.gpu_manager import GPUManager
from training.train import Trainer
import wandb
import yaml


EXPERIMENTS_DIRNAME = Path(__file__).parents[0].resolve() / "experiments"


DEFAULT_TRAIN_ARGS = {"batch_size": 64, "epochs": 16}


def get_level(experiment_config: Dict) -> int:
    """Sets the logger level."""
    if experiment_config["verbosity"] == 0:
        return 40
    elif experiment_config["verbosity"] == 1:
        return 20
    else:
        return 10


def create_experiment_dir(model: Callable, experiment_config: Dict) -> Path:
    """Create new experiment."""
    EXPERIMENTS_DIRNAME.mkdir(parents=True, exist_ok=True)
    experiment_dir = EXPERIMENTS_DIRNAME / model.__name__
    if experiment_config["resume_experiment"] is None:
        experiment = datetime.now().strftime("%m%d_%H%M%S")
        logger.debug(f"Creating a new experiment called {experiment}")
    else:
        available_experiments = glob(str(experiment_dir) + "/*")
        available_experiments.sort()
        if experiment_config["resume_experiment"] == "last":
            experiment = available_experiments[-1]
            logger.debug(f"Resuming the latest experiment {experiment}")
        else:
            experiment = experiment_config["resume_experiment"]
            if not str(experiment_dir / experiment) in available_experiments:
                raise FileNotFoundError("Experiment does not exist.")
            logger.debug(f"Resuming the experiment {experiment}")

    experiment_dir = experiment_dir / experiment
    return experiment_dir


def load_modules_and_arguments(experiment_config: Dict) -> Tuple[Callable, Dict]:
    """Loads all modules and arguments."""
    # Import the data loader module and arguments.
    datasets_module = importlib.import_module("text_recognizer.datasets")
    data_loader_ = getattr(datasets_module, experiment_config["dataloader"])
    data_loader_args = experiment_config.get("data_loader_args", {})

    # Import the model module and model arguments.
    models_module = importlib.import_module("text_recognizer.models")
    model_class_ = getattr(models_module, experiment_config["model"])

    # Import metrics.
    metric_fns_ = {
        metric: getattr(models_module, metric)
        for metric in experiment_config["metrics"]
    }

    # Import network module and arguments.
    network_module = importlib.import_module("text_recognizer.networks")
    network_fn_ = getattr(network_module, experiment_config["network"])
    network_args = experiment_config.get("network_args", {})

    # Criterion
    criterion_ = getattr(torch.nn, experiment_config["criterion"])
    criterion_args = experiment_config.get("criterion_args", {})

    # Optimizer
    optimizer_ = getattr(torch.optim, experiment_config["optimizer"])
    optimizer_args = experiment_config.get("optimizer_args", {})

    # Callbacks
    callback_modules = importlib.import_module("training.callbacks")
    callbacks = []
    for callback in experiment_config["callbacks"]:
        args = experiment_config["callback_args"][callback] or {}
        callbacks.append(getattr(callback_modules, callback)(**args))

    # Learning rate scheduler
    if experiment_config["lr_scheduler"] is not None:
        lr_scheduler_ = getattr(
            torch.optim.lr_scheduler, experiment_config["lr_scheduler"]
        )
        lr_scheduler_args = experiment_config.get("lr_scheduler_args", {})
    else:
        lr_scheduler_ = None
        lr_scheduler_args = None

    model_args = {
        "data_loader": data_loader_,
        "data_loader_args": data_loader_args,
        "metrics": metric_fns_,
        "network_fn": network_fn_,
        "network_args": network_args,
        "criterion": criterion_,
        "criterion_args": criterion_args,
        "optimizer": optimizer_,
        "optimizer_args": optimizer_args,
        "lr_scheduler": lr_scheduler_,
        "lr_scheduler_args": lr_scheduler_args,
    }

    return model_class_, model_args, callbacks


def run_experiment(
    experiment_config: Dict, save_weights: bool, device: str, use_wandb: bool = False
) -> None:
    """Runs an experiment."""

    # Load the modules and model arguments.
    model_class_, model_args, callbacks = load_modules_and_arguments(experiment_config)

    # Initializes the model with experiment config.
    model = model_class_(**model_args, device=device)

    # Instantiate a CallbackList.
    callbacks = CallbackList(model, callbacks)

    # Create new experiment.
    experiment_dir = create_experiment_dir(model, experiment_config)

    # Create log and model directories.
    log_dir = experiment_dir / "log"
    model_dir = experiment_dir / "model"

    # Set the model dir to be able to save checkpoints.
    model.model_dir = model_dir

    # Get checkpoint path.
    checkpoint_path = model_dir / "last.pt"
    if not checkpoint_path.exists():
        checkpoint_path = None

    # Make sure the log directory exists.
    log_dir.mkdir(parents=True, exist_ok=True)

    # Have to remove default logger to get tqdm to work properly.
    logger.remove()

    # Fetch verbosity level.
    level = get_level(experiment_config)

    logger.add(lambda msg: tqdm.write(msg, end=""), colorize=True, level=level)
    logger.add(
        str(log_dir / "train.log"),
        format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}",
    )

    if "cuda" in device:
        gpu_index = re.sub("[^0-9]+", "", device)
        logger.info(
            f"Running experiment with config {experiment_config} on GPU {gpu_index}"
        )
    else:
        logger.info(f"Running experiment with config {experiment_config} on CPU")

    logger.info(f"The class mapping is {model.mapping}")

    # Initializes Weights & Biases
    if use_wandb:
        wandb.init(project="text-recognizer", config=experiment_config)

        # Lets W&B save the model and track the gradients and optional parameters.
        wandb.watch(model.network)

    # Pŕints a summary of the network in terminal.
    model.summary()

    experiment_config["train_args"] = {
        **DEFAULT_TRAIN_ARGS,
        **experiment_config.get("train_args", {}),
    }

    experiment_config["experiment_group"] = experiment_config.get(
        "experiment_group", None
    )

    experiment_config["device"] = device

    # Save the config used in the experiment folder.
    config_path = experiment_dir / "config.yml"
    with open(str(config_path), "w") as f:
        yaml.dump(experiment_config, f)

    trainer = Trainer(
        model=model,
        model_dir=model_dir,
        train_args=experiment_config["train_args"],
        callbacks=callbacks,
        checkpoint_path=checkpoint_path,
    )

    trainer.fit()

    logger.info("Loading checkpoint with the best weights.")
    model.load_checkpoint(model_dir / "best.pt")

    score = trainer.validate()

    logger.info(f"Validation set evaluation: {score}")

    if use_wandb:
        wandb.log({"validation_metric": score["val_accuracy"]})

    if save_weights:
        model.save_weights(model_dir)


@click.command()
@click.option(
    "--experiment_config",
    type=str,
    help='Experiment JSON, e.g. \'{"dataloader": "EmnistDataLoader", "model": "CharacterModel", "network": "mlp"}\'',
)
@click.option("--gpu", type=int, default=0, help="Provide the index of the GPU to use.")
@click.option(
    "--save",
    is_flag=True,
    help="If set, the final weights will be saved to a canonical, version-controlled location.",
)
@click.option(
    "--nowandb", is_flag=False, help="If true, do not use wandb for this run."
)
def main(experiment_config: str, gpu: int, save: bool, nowandb: bool) -> None:
    """Run experiment."""
    if gpu < 0:
        gpu_manager = GPUManager(True)
        gpu = gpu_manager.get_free_gpu()
    device = "cuda:" + str(gpu)

    experiment_config = json.loads(experiment_config)
    os.environ["CUDA_VISIBLE_DEVICES"] = f"{gpu}"
    run_experiment(experiment_config, save, device, use_wandb=not nowandb)


if __name__ == "__main__":
    main()