summaryrefslogtreecommitdiff
path: root/text_recognizer/datasets/base_dataset.py
blob: 7322d7f4b96da07393cdb3cfa8c1899835b2d3ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
"""Base PyTorch Dataset class."""
from typing import Any, Callable, Dict, Sequence, Tuple, Union

import torch
from torch import Tensor
from torch.utils.data import Dataset


class BaseDataset(Dataset):
    """
    Base Dataset class that processes data and targets through optional transfroms.

    Args:
        data (Union[Sequence, Tensor]): Torch tensors, numpy arrays, or PIL images.
        targets (Union[Sequence, Tensor]): Torch tensors or numpy arrays.
        tranform (Callable): Function that takes a datum and applies transforms.
        target_transform (Callable): Fucntion that takes a target and applies
            target transforms.
    """
    def __init__(self,
            data: Union[Sequence, Tensor],
            targets: Union[Sequence, Tensor],
            transform: Callable = None,
            target_transform: Callable = None,
            ) -> None:
        if len(data) != len(targets):
            raise ValueError("Data and targets must be of equal length.")
        self.data = data
        self.targets = targets
        self.transform = transform
        self.target_transform = target_transform


    def __len__(self) -> int:
        """Return the length of the dataset."""
        return len(self.data)
            
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        """Return a datum and its target, after processing by transforms.

        Args:
            index (int): Index of a datum in the dataset.

        Returns:
            Tuple[Any, Any]: Datum and target pair.

        """
        datum, target = self.data[index], self.targets[index]

        if self.transform is not None:
            datum = self.transform(datum)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return datum, target


def convert_strings_to_labels(strings: Sequence[str], mapping: Dict[str, int], length: int) -> Tensor:
    """
    Convert a sequence of N strings to (N, length) ndarray, with each string wrapped with <S> and </S> tokens,
    and padded wiht the <P> token.
    """
    labels = torch.ones((len(strings), length), dtype=torch.long) * mapping["<P>"]
    for i, string in enumerate(strings):
        tokens = list(string)
        tokens = ["<S>", *tokens, "</S>"]
        for j, token in enumerate(tokens):
            labels[i, j] = mapping[token]
    return labels