1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
"""PyTorch Lightning Barlow Twins model."""
from typing import Tuple, Type
import attr
from torch import nn
from torch import Tensor
from text_recognizer.models.base import BaseLitModel
from text_recognizer.criterions.barlow_twins import BarlowTwinsLoss
@attr.s(auto_attribs=True, eq=False)
class BarlowTwinsLitModel(BaseLitModel):
"""Barlow Twins training proceduer."""
network: Type[nn.Module] = attr.ib()
loss_fn: BarlowTwinsLoss = attr.ib()
def forward(self, data: Tensor) -> Tensor:
"""Encodes image to projector latent."""
return self.network(data)
def training_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> Tensor:
"""Training step."""
data, _ = batch
x1, x2 = data
z1, z2 = self(x1), self(x2)
loss = self.loss_fn(z1, z2)
self.log("train/loss", loss)
return loss
def validation_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
"""Validation step."""
data, _ = batch
x1, x2 = data
z1, z2 = self(x1), self(x2)
loss = self.loss_fn(z1, z2)
self.log("val/loss", loss, prog_bar=True)
def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
"""Test step."""
data, _ = batch
x1, x2 = data
z1, z2 = self(x1), self(x2)
loss = self.loss_fn(z1, z2)
self.log("test/loss", loss, prog_bar=True)
|