summaryrefslogtreecommitdiff
path: root/text_recognizer/models/base.py
blob: e86b478bbb722f7d40a66eeeac955632a9a703a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
"""Base PyTorch Lightning model."""
from typing import Any, Dict, Tuple, Type

import madgrad
import pytorch_lightning as pl
import torch
from torch import nn
from torch import Tensor

from text_recognizer import networks


class BaseModel(pl.LightningModule):
    """Abstract PyTorch Lightning class."""

    def __init__(self, network_args: Dict, optimizer_args: Dict, lr_scheduler_args: Dict, criterion_args: Dict, monitor: str = "val_loss") -> None:
        super().__init__()
        self.monitor = monitor
        self.network = getattr(networks, network_args["type"])(**network_args["args"])
        self.optimizer_args = optimizer_args
        self.lr_scheduler_args = lr_scheduler_args
        self.loss_fn = self.configure_criterion(criterion_args)

        # Accuracy metric
        self.train_acc = pl.metrics.Accuracy()
        self.val_acc = pl.metrics.Accuracy()
        self.test_acc = pl.metrics.Accuracy()

    @staticmethod
    def configure_criterion(criterion_args: Dict) -> Type[nn.Module]:
        """Returns a loss functions."""
        args = {} or criterion_args["args"]
        return getattr(nn, criterion_args["type"])(**args)

    def configure_optimizer(self) -> Dict[str, Any]:
        """Configures optimizer and lr scheduler."""
        args = {} or self.optimizer_args["args"]
        if self.optimizer_args["type"] == "MADGRAD":
            optimizer = getattr(madgrad, self.optimizer_args["type"])(**args)
        else:
            optimizer = getattr(torch.optim, self.optimizer_args["type"])(**args)

        args = {} or self.lr_scheduler_args["args"]
        scheduler = getattr(torch.optim.lr_scheduler, self.lr_scheduler_args["type"])(**args)
        return {"optimizer": optimizer, "lr_scheduler": scheduler, "monitor": self.monitor}

    def forward(self, data: Tensor) -> Tensor:
        """Feedforward pass."""
        return self.network(data)

    def training_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> Tensor:
        """Training step."""
        data, targets = batch
        logits = self(data)
        loss = self.loss_fn(logits, targets)
        self.log("train_loss", loss)
        self.train_acc(logits, targets)
        self.log("train_acc": self.train_acc, on_step=False, on_epoch=True)
        return loss

    def validation_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
        """Validation step."""
        data, targets = batch
        logits = self(data)
        loss = self.loss_fn(logits, targets)
        self.log("val_loss", loss, prog_bar=True)
        self.val_acc(logits, targets)
        self.log("val_acc", self.val_acc, on_step=False, on_epoch=True, prog_bar=True)

    def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
        """Test step."""
        data, targets = batch
        logits = self(data)
        self.test_acc(logits, targets)
        self.log("test_acc", self.test_acc, on_step=False, on_epoch=True)