1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
"""Base network module."""
import math
from typing import Optional, Tuple, Type
from loguru import logger as log
from torch import nn, Tensor
from text_recognizer.networks.transformer.layers import Decoder
class BaseTransformer(nn.Module):
def __init__(
self,
input_dims: Tuple[int, int, int],
hidden_dim: int,
num_classes: int,
pad_index: Tensor,
encoder: Type[nn.Module],
decoder: Decoder,
token_pos_embedding: Optional[Type[nn.Module]] = None,
) -> None:
super().__init__()
self.input_dims = input_dims
self.hidden_dim = hidden_dim
self.num_classes = num_classes
self.pad_index = pad_index
self.encoder = encoder
self.decoder = decoder
# Token embedding.
self.token_embedding = nn.Embedding(
num_embeddings=self.num_classes, embedding_dim=self.hidden_dim
)
# Positional encoding for decoder tokens.
if not self.decoder.has_pos_emb:
self.token_pos_embedding = token_pos_embedding
else:
self.token_pos_embedding = None
log.debug("Decoder already have a positional embedding.")
self.norm = nn.LayerNorm(self.hidden_dim)
# Output layer
self.to_logits = nn.Linear(
in_features=self.hidden_dim, out_features=self.num_classes
)
def encode(self, x: Tensor) -> Tensor:
"""Encodes images with encoder."""
return self.encoder(x)
def decode(self, src: Tensor, trg: Tensor) -> Tensor:
"""Decodes latent images embedding into word pieces.
Args:
src (Tensor): Latent images embedding.
trg (Tensor): Word embeddings.
Shapes:
- z: :math: `(B, Sx, E)`
- context: :math: `(B, Sy)`
- out: :math: `(B, Sy, T)`
where Sy is the length of the output and T is the number of tokens.
Returns:
Tensor: Sequence of word piece embeddings.
"""
trg = trg.long()
trg_mask = trg != self.pad_index
trg = self.token_embedding(trg) * math.sqrt(self.hidden_dim)
trg = (
self.token_pos_embedding(trg)
if self.token_pos_embedding is not None
else trg
)
out = self.decoder(x=trg, context=src, input_mask=trg_mask)
out = self.norm(out)
logits = self.to_logits(out) # [B, Sy, T]
logits = logits.permute(0, 2, 1) # [B, T, Sy]
return logits
def forward(self, x: Tensor, context: Tensor) -> Tensor:
"""Encodes images into word piece logtis.
Args:
x (Tensor): Input image(s).
context (Tensor): Target word embeddings.
Shapes:
- x: :math: `(B, C, H, W)`
- context: :math: `(B, Sy, T)`
where B is the batch size, C is the number of input channels, H is
the image height and W is the image width.
Returns:
Tensor: Sequence of logits.
"""
z = self.encode(x)
logits = self.decode(z, context)
return logits
|