summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/cnn_tranformer.py
blob: 38de0ba80d8dc1eaf4df1ac5d7ec3ae427c3e19c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""Vision transformer for character recognition."""
from typing import Type

import attr
from torch import nn, Tensor


@attr.s
class CnnTransformer(nn.Module):
    def __attrs_pre_init__(self) -> None:
        super().__init__()

    # Parameters,
    input_dims: Tuple[int, int, int] = attr.ib()
    hidden_dim: int = attr.ib()
    dropout_rate: float = attr.ib()
    max_output_len: int = attr.ib()
    num_classes: int = attr.ib()

    # Modules.
    encoder: Type[nn.Module] = attr.ib()
    decoder: Type[nn.Module] = attr.ib()
    embedding: nn.Embedding = attr.ib(init=False, default=None)
    latent_encoder: nn.Sequential = attr.ib(init=False, default=None)
    token_embedding: nn.Embedding = attr.ib(init=False, default=None)
    token_pos_encoder: PositionalEncoding = attr.ib(init=False, default=None)
    head: nn.Linear = attr.ib(init=False, default=None)

    def __attrs_post_init__(self) -> None:
        # Latent projector for down sampling number of filters and 2d
        # positional encoding.
        self.latent_encoder = nn.Sequential(
            nn.Conv2d(
                in_channels=self.encoder.out_channels,
                out_channels=self.hidden_dim,
                kernel_size=1,
            ),
            PositionalEncoding2D(
                hidden_dim=self.hidden_dim,
                max_h=self.input_dims[1],
                max_w=self.input_dims[2],
            ),
            nn.Flatten(start_dim=2),
        )

        # Token embedding.
        self.token_embedding = nn.Embedding(
            num_embeddings=self.num_classes, embedding_dim=self.hidden_dim
        )

        # Positional encoding for decoder tokens.
        self.token_pos_encoder = PositionalEncoding(
            hidden_dim=self.hidden_dim, dropout_rate=self.dropout_rate
        )
        # Head
        self.head = nn.Linear(
            in_features=self.hidden_dim, out_features=self.num_classes
        )

        # Initalize weights for encoder.
        self.init_weights()

    def init_weights(self) -> None:
        """Initalize weights for decoder network and head."""
        bound = 0.1
        self.token_embedding.weight.data.uniform_(-bound, bound)
        self.head.bias.data.zero_()
        self.head.weight.data.uniform_(-bound, bound)
        # TODO: Initalize encoder?

    def encode(self, x: Tensor) -> Tensor:
        """Encodes an image into a latent feature vector.

        Args:
            x (Tensor): Image tensor.

        Shape:
            - x: :math: `(B, C, H, W)`
            - z: :math: `(B, Sx, E)`

            where Sx is the length of the flattened feature maps projected from
            the encoder. E latent dimension for each pixel in the projected
            feature maps.

        Returns:
            Tensor: A Latent embedding of the image.
        """
        z = self.encoder(x)
        z = self.latent_encoder(z)

        # Permute tensor from [B, E, Ho * Wo] to [Sx, B, E]
        z = z.permute(2, 0, 1)
        return z

    def decode(self, z: Tensor, trg: Tensor) -> Tensor:
        """Decodes latent images embedding into word pieces.

        Args:
            z (Tensor): Latent images embedding.
            trg (Tensor): Word embeddings.

        Shapes:
            - z: :math: `(B, Sx, E)`
            - out: :math: `(B, Sy, T)`

            where Sy is the length of the output and T is the number of tokens.

        Returns:
            Tensor: Sequence of word piece embeddings.
        """
        pass

    def forward(self, x: Tensor, trg: Tensor) -> Tensor:
        """Encodes images into word piece logtis.

        Args:
            x (Tensor): Input image(s).
            trg (Tensor): Target word embeddings.

        Shapes:
            - x: :math: `(B, C, H, W)`
            - trg: :math: `(B, Sy, T)`

            where B is the batch size, C is the number of input channels, H is
            the image height and W is the image width.
        """
        z = self.encode(x)
        y = self.decode(z, trg)
        return y

    def predict(self, x: Tensor) -> Tensor:
        """Predicts text in image."""
        pass