summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/unet.py
blob: 510910fce2595d9b79b53714dcc5ddddde05ae2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
"""UNet for segmentation."""
from typing import List, Optional, Tuple, Union

import torch
from torch import nn
from torch import Tensor

from text_recognizer.networks.util import activation_function


class _ConvBlock(nn.Module):
    """Modified UNet convolutional block with dilation."""

    def __init__(
        self,
        channels: List[int],
        activation: str,
        num_groups: int,
        dropout_rate: float = 0.1,
        kernel_size: int = 3,
        dilation: int = 1,
        padding: int = 0,
    ) -> None:
        super().__init__()
        self.channels = channels
        self.dropout_rate = dropout_rate
        self.kernel_size = kernel_size
        self.dilation = dilation
        self.padding = padding
        self.num_groups = num_groups
        self.activation = activation_function(activation)
        self.block = self._configure_block()
        self.residual_conv = nn.Sequential(
            nn.Conv2d(
                self.channels[0], self.channels[-1], kernel_size=3, stride=1, padding=1
            ),
            self.activation,
        )

    def _configure_block(self) -> nn.Sequential:
        block = []
        for i in range(len(self.channels) - 1):
            block += [
                nn.Dropout(p=self.dropout_rate),
                nn.GroupNorm(self.num_groups, self.channels[i]),
                self.activation,
                nn.Conv2d(
                    self.channels[i],
                    self.channels[i + 1],
                    kernel_size=self.kernel_size,
                    padding=self.padding,
                    stride=1,
                    dilation=self.dilation,
                ),
            ]

        return nn.Sequential(*block)

    def forward(self, x: Tensor) -> Tensor:
        """Apply the convolutional block."""
        residual = self.residual_conv(x)
        return self.block(x) + residual


class _DownSamplingBlock(nn.Module):
    """Basic down sampling block."""

    def __init__(
        self,
        channels: List[int],
        activation: str,
        num_groups: int,
        pooling_kernel: Union[int, bool] = 2,
        dropout_rate: float = 0.1,
        kernel_size: int = 3,
        dilation: int = 1,
        padding: int = 0,
    ) -> None:
        super().__init__()
        self.conv_block = _ConvBlock(
            channels,
            activation,
            num_groups,
            dropout_rate,
            kernel_size,
            dilation,
            padding,
        )
        self.down_sampling = nn.MaxPool2d(pooling_kernel) if pooling_kernel else None

    def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]:
        """Return the convolutional block output and a down sampled tensor."""
        x = self.conv_block(x)
        x_down = self.down_sampling(x) if self.down_sampling is not None else x

        return x_down, x


class _UpSamplingBlock(nn.Module):
    """The upsampling block of the UNet."""

    def __init__(
        self,
        channels: List[int],
        activation: str,
        num_groups: int,
        scale_factor: int = 2,
        dropout_rate: float = 0.1,
        kernel_size: int = 3,
        dilation: int = 1,
        padding: int = 0,
    ) -> None:
        super().__init__()
        self.conv_block = _ConvBlock(
            channels,
            activation,
            num_groups,
            dropout_rate,
            kernel_size,
            dilation,
            padding,
        )
        self.up_sampling = nn.Upsample(
            scale_factor=scale_factor, mode="bilinear", align_corners=True
        )

    def forward(self, x: Tensor, x_skip: Optional[Tensor] = None) -> Tensor:
        """Apply the up sampling and convolutional block."""
        x = self.up_sampling(x)
        if x_skip is not None:
            x = torch.cat((x, x_skip), dim=1)
        return self.conv_block(x)


class UNet(nn.Module):
    """UNet architecture."""

    def __init__(
        self,
        in_channels: int = 1,
        base_channels: int = 64,
        num_classes: int = 3,
        depth: int = 4,
        activation: str = "relu",
        num_groups: int = 8,
        dropout_rate: float = 0.1,
        pooling_kernel: int = 2,
        scale_factor: int = 2,
        kernel_size: Optional[List[int]] = None,
        dilation: Optional[List[int]] = None,
        padding: Optional[List[int]] = None,
    ) -> None:
        super().__init__()
        self.depth = depth
        self.num_groups = num_groups

        if kernel_size is not None and dilation is not None and padding is not None:
            if (
                len(kernel_size) != depth
                and len(dilation) != depth
                and len(padding) != depth
            ):
                raise RuntimeError(
                    "Length of convolutional parameters does not match the depth."
                )
            self.kernel_size = kernel_size
            self.padding = padding
            self.dilation = dilation

        else:
            self.kernel_size = [3] * depth
            self.padding = [1] * depth
            self.dilation = [1] * depth

        self.dropout_rate = dropout_rate
        self.conv = nn.Conv2d(
            in_channels, base_channels, kernel_size=3, stride=1, padding=1
        )

        channels = [base_channels] + [base_channels * 2 ** i for i in range(depth)]
        self.encoder_blocks = self._configure_down_sampling_blocks(
            channels, activation, pooling_kernel
        )
        self.decoder_blocks = self._configure_up_sampling_blocks(
            channels, activation, scale_factor
        )

        self.head = nn.Conv2d(base_channels, num_classes, kernel_size=1)

    def _configure_down_sampling_blocks(
        self, channels: List[int], activation: str, pooling_kernel: int
    ) -> nn.ModuleList:
        blocks = nn.ModuleList([])
        for i in range(len(channels) - 1):
            pooling_kernel = pooling_kernel if i < self.depth - 1 else False
            dropout_rate = self.dropout_rate if i < 0 else 0
            blocks += [
                _DownSamplingBlock(
                    [channels[i], channels[i + 1], channels[i + 1]],
                    activation,
                    self.num_groups,
                    pooling_kernel,
                    dropout_rate,
                    self.kernel_size[i],
                    self.dilation[i],
                    self.padding[i],
                )
            ]

        return blocks

    def _configure_up_sampling_blocks(
        self, channels: List[int], activation: str, scale_factor: int,
    ) -> nn.ModuleList:
        channels.reverse()
        self.kernel_size.reverse()
        self.dilation.reverse()
        self.padding.reverse()
        return nn.ModuleList(
            [
                _UpSamplingBlock(
                    [channels[i] + channels[i + 1], channels[i + 1], channels[i + 1]],
                    activation,
                    self.num_groups,
                    scale_factor,
                    self.dropout_rate,
                    self.kernel_size[i],
                    self.dilation[i],
                    self.padding[i],
                )
                for i in range(len(channels) - 2)
            ]
        )

    def _encode(self, x: Tensor) -> List[Tensor]:
        x_skips = []
        for block in self.encoder_blocks:
            x, x_skip = block(x)
            x_skips.append(x_skip)
        return x_skips

    def _decode(self, x_skips: List[Tensor]) -> Tensor:
        x = x_skips[-1]
        for i, block in enumerate(self.decoder_blocks):
            x = block(x, x_skips[-(i + 2)])
        return x

    def forward(self, x: Tensor) -> Tensor:
        """Forward pass with the UNet model."""
        if len(x.shape) < 4:
            x = x[(None,) * (4 - len(x.shape))]
        x = self.conv(x)
        x_skips = self._encode(x)
        x = self._decode(x_skips)
        return self.head(x)