blob: 9224bc7b4f3bb697875e1ba8d223d59b9b018cf6 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
# @package _global_
defaults:
- override /network: vqvae
- override /criterion: vqgan_loss
- override /model: lit_vqgan
- override /callbacks: wandb_vae
- override /optimizers: null
- override /lr_schedulers: null
criterion:
_target_: text_recognizer.criterions.vqgan_loss.VQGANLoss
reconstruction_loss:
_target_: torch.nn.L1Loss
reduction: mean
discriminator:
_target_: text_recognizer.criterions.n_layer_discriminator.NLayerDiscriminator
in_channels: 1
num_channels: 64
num_layers: 3
vq_loss_weight: 0.25
discriminator_weight: 1.0
discriminator_factor: 1.0
discriminator_iter_start: 2.0e4
datamodule:
batch_size: 6
lr_schedulers: null
# lr_schedulers:
# generator:
# _target_: torch.optim.lr_scheduler.OneCycleLR
# max_lr: 3.0e-4
# total_steps: null
# epochs: 100
# steps_per_epoch: 3369
# pct_start: 0.1
# anneal_strategy: cos
# cycle_momentum: true
# base_momentum: 0.85
# max_momentum: 0.95
# div_factor: 1.0e3
# final_div_factor: 1.0e4
# three_phase: true
# last_epoch: -1
# verbose: false
#
# # Non-class arguments
# interval: step
# monitor: val/loss
#
# discriminator:
# _target_: torch.optim.lr_scheduler.CosineAnnealingLR
# T_max: 64
# eta_min: 0.0
# last_epoch: -1
#
# interval: epoch
# monitor: val/loss
optimizers:
generator:
_target_: madgrad.MADGRAD
lr: 1.0e-4
momentum: 0.5
weight_decay: 0
eps: 1.0e-7
parameters: network
discriminator:
_target_: madgrad.MADGRAD
lr: 4.5e-6
momentum: 0.5
weight_decay: 0
eps: 1.0e-6
parameters: loss_fn.discriminator
trainer:
max_epochs: 64
# gradient_clip_val: 1.0e1
summary: null
|