summaryrefslogtreecommitdiff
path: root/README.md
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2024-04-06 01:40:27 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2024-04-06 01:40:27 +0200
commitdb1aa44e2737685ad58008a6d399573aaa75216d (patch)
treee5515a0d85a18f3332712b8ba7a552d91ae67620 /README.md
parent7685677668e0e6987b582f8350c0573ed4a7abf6 (diff)
Update README
Diffstat (limited to 'README.md')
-rw-r--r--README.md99
1 files changed, 3 insertions, 96 deletions
diff --git a/README.md b/README.md
index d1b4a0f..d36533b 100644
--- a/README.md
+++ b/README.md
@@ -1,103 +1,10 @@
# Retrieval Augmented Generation
-## Plan
+tbd
-- [ ] Architecture
- - [ ] Vector store
- - [ ] which one? FAISS?
- - [ ] Build index of the document
- - [ ] Embedding model (mxbai-embed-large)
- - [ ] LLM (Dolphin)
-- [ ] Gather some documents
-- [ ] Create a prompt for the query
+### TODO
-
-### Pre-Processing of Document
-1. Use langchain document loader and splitter
- ```python
- from langchain_community.document_loaders import PyPDFLoader
- from langchain.text_splitter import RecursiveCharacterTextSplitter
- ```
-
-2. Generate embeddings with mxbai, example:
-```python
-from sentence_transformers import SentenceTransformer
-from sentence_transformers.util import cos_sim
-
-# 1. load model
-model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
-
-# For retrieval you need to pass this prompt.
-query = 'Represent this sentence for searching relevant passages: A man is eating a piece of bread'
-
-docs = [
- query,
- "A man is eating food.",
- "A man is eating pasta.",
- "The girl is carrying a baby.",
- "A man is riding a horse.",
-]
-
-# 2. Encode
-embeddings = model.encode(docs)
-
-# 3. Calculate cosine similarity
-similarities = cos_sim(embeddings[0], embeddings[1:])
-```
-But we will use ollama...
-
-(otherwise install `sentence-transformers`)
-
-3. Create vector store
-```python
-import numpy as np
-d = 64 # dimension
-nb = 100000 # database size
-nq = 10000 # nb of queries
-np.random.seed(1234) # make reproducible
-xb = np.random.random((nb, d)).astype('float32')
-xb[:, 0] += np.arange(nb) / 1000.
-xq = np.random.random((nq, d)).astype('float32')
-xq[:, 0] += np.arange(nq) / 1000.
-
-import faiss # make faiss available
-index = faiss.IndexFlatL2(d) # build the index
-print(index.is_trained)
-index.add(xb) # add vectors to the index
-print(index.ntotal)
-
-k = 4 # we want to see 4 nearest neighbors
-D, I = index.search(xb[:5], k) # sanity check
-print(I)
-print(D)
-D, I = index.search(xq, k) # actual search
-print(I[:5]) # neighbors of the 5 first queries
-print(I[-5:]) # neighbors of the 5 last queries
-```
-
-I need to figure out the vector dim of the mxbai model. -> 1024
-
-4. Use Postgres as a persisted kv-store
-
-Save index of chunk as key and value as paragraph.
-
-5. Create user input pipeline
-
-5.1 Create search prompt for document retrieval
-
-5.2 Fetch nearest neighbors as context
-
-5.3 Retrieve the values from the document db
-
-5.4 Add paragraphs as context to the query
-
-5.5 Send query to LLM
-
-5.6 Return output
-
-5.7 ....
-
-5.8 Profit
+Build script/or FE for adding pdfs or retrieve information
### Frontend (Low priority)