blob: 52521caaf26ba363ed92a5f947c53c73cef2fb61 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
import os
from typing import Any, Generator, List
import ollama
from loguru import logger as log
from rag.retriever.vector import Document
from .abstract import AbstractGenerator
from .prompt import ANSWER_INSTRUCTION, Prompt
class Ollama(metaclass=AbstractGenerator):
def __init__(self) -> None:
self.model = os.environ["GENERATOR_MODEL"]
log.debug(f"Using {self.model} for generator...")
def __context(self, documents: List[Document]) -> str:
results = [
f"Document: {i}\ntitle: {doc.title}\ntext: {doc.text}"
for i, doc in enumerate(documents)
]
return "\n".join(results)
def __metaprompt(self, prompt: Prompt) -> str:
metaprompt = (
"Context information is below.\n"
"---------------------\n"
f"{self.__context(prompt.documents)}\n\n"
"---------------------\n"
f"{ANSWER_INSTRUCTION}"
"Do not attempt to answer the query without relevant context and do not use"
" prior knowledge or training data!\n"
f"Query: {prompt.query.strip()}\n\n"
"Answer:"
)
return metaprompt
def generate(self, prompt: Prompt) -> Generator[Any, Any, Any]:
log.debug("Generating answer with ollama...")
metaprompt = self.__metaprompt(prompt)
for chunk in ollama.generate(model=self.model, prompt=metaprompt, stream=True):
yield chunk["response"]
|