blob: a686aaf5eb355e8c2b02c36cc042074b95458573 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
import os
from typing import List
from uuid import uuid4
import numpy as np
import ollama
from langchain_core.documents import Document
from qdrant_client.http.models import StrictFloat
from rag.db.embeddings import Point
class Encoder:
def __init__(self) -> None:
self.model = os.environ["ENCODER_MODEL"]
self.query_prompt = "Represent this sentence for searching relevant passages: "
def __encode(self, prompt: str) -> List[StrictFloat]:
return list(ollama.embeddings(model=self.model, prompt=prompt)["embedding"])
def encode_document(self, chunks: List[Document]) -> np.ndarray:
return [
Point(
id=str(uuid4()),
vector=self.__encode(chunk.page_content),
payload={"text": chunk.page_content},
)
for chunk in chunks
]
def query(self, query: str) -> np.ndarray:
query = self.query_prompt + query
return self.__encode(query)
|