blob: 095c6af3cfa45a267872a49e9167d6edf85a5ddd (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
import os
from typing import List
import numpy as np
import ollama
from langchain_core.documents import Document
class Encoder:
def __init__(self) -> None:
self.model = os.environ["ENCODER_MODEL"]
self.query_prompt = "Represent this sentence for searching relevant passages: "
def __encode(self, prompt: str) -> np.ndarray:
x = ollama.embeddings(model=self.model, prompt=prompt)
x = np.array([x["embedding"]]).astype("float32")
return x
def encode_document(self, chunks: List[Document]) -> np.ndarray:
return np.concatenate([self.__encode(chunk.page_content) for chunk in chunks])
def query(self, query: str) -> np.ndarray:
query = self.query_prompt + query
return self.__encode(query)
|