blob: 4c5addc6568c8ae3f77cff4ee9f8f75f5ba434d8 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
import os
from pathlib import Path
from typing import List, Optional
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders.blob_loaders import Blob
from langchain_community.document_loaders.parsers.pdf import (
PyPDFParser,
)
from langchain_core.documents import Document
class PDFParser:
def __init__(self) -> None:
self.parser = PyPDFParser(password=None, extract_images=False)
def from_data(self, blob: Blob) -> List[Document]:
return self.parser.parse(blob)
def from_path(self, path: Path) -> Blob:
return Blob.from_path(path)
def chunk(
self, document: List[Document], source: Optional[str] = None
) -> List[Document]:
splitter = RecursiveCharacterTextSplitter(
chunk_size=int(os.environ["CHUNK_SIZE"]),
chunk_overlap=int(os.environ["CHUNK_OVERLAP"]),
)
chunks = splitter.split_documents(document)
if source is not None:
for c in chunks:
c.metadata["source"] = source
return chunks
|