blob: e2bef31c97353083e2822eb2dabfcbcd1d2c1023 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
import os
from loguru import logger as log
from sentence_transformers import CrossEncoder
from rag.message import Messages
from rag.retriever.encoder import Query
from rag.retriever.rerank.abstract import AbstractReranker
from rag.retriever.vector import Documents
Context = Documents | Messages
class Reranker(metaclass=AbstractReranker):
def __init__(self) -> None:
self.model = CrossEncoder(os.environ["RERANK_MODEL"], device="cpu")
self.top_k = int(os.environ["RERANK_TOP_K"])
self.relevance_threshold = float(os.environ["RERANK_RELEVANCE_THRESHOLD"])
def rerank(self, query: Query, documents: Context) -> Context:
results = self.model.rank(
query=query.query,
documents=documents.content(),
return_documents=False,
top_k=self.top_k,
)
rankings = list(
map(
lambda x: x.get("corpus_id", 0),
filter(
lambda x: x.get("score", 0.0) > self.relevance_threshold, results
),
)
)
log.debug(
f"Reranking gave {len(rankings)} relevant documents of {len(documents)}"
)
documents.rerank(rankings)
return documents
|