diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2023-09-03 22:54:09 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2023-09-03 22:54:09 +0200 |
commit | 1732ed564a738a42c1bf6e8127ae810f5658cb06 (patch) | |
tree | 8d7f67793fec820850b4f8fd92f762f7f5e4b9f6 | |
parent | 53cfc21cffa4e877ad0959170b47b690d2fdb40f (diff) |
Revert "Delete convnext"
This reverts commit 7239bce214607c70a7a91358586f265b2f74de7b.
-rw-r--r-- | notebooks/04-convnext.ipynb | 248 | ||||
-rw-r--r-- | text_recognizer/network/convnext/__init__.py | 7 | ||||
-rw-r--r-- | text_recognizer/network/convnext/attention.py | 79 | ||||
-rw-r--r-- | text_recognizer/network/convnext/convnext.py | 77 | ||||
-rw-r--r-- | text_recognizer/network/convnext/downsample.py | 21 | ||||
-rw-r--r-- | text_recognizer/network/convnext/norm.py | 18 | ||||
-rw-r--r-- | text_recognizer/network/convnext/residual.py | 16 |
7 files changed, 466 insertions, 0 deletions
diff --git a/notebooks/04-convnext.ipynb b/notebooks/04-convnext.ipynb new file mode 100644 index 0000000..5ab71c8 --- /dev/null +++ b/notebooks/04-convnext.ipynb @@ -0,0 +1,248 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 14, + "id": "7c02ae76-b540-4b16-9492-e9210b3b9249", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], + "source": [ + "import os\n", + "os.environ['CUDA_VISIBLE_DEVICE'] = ''\n", + "import random\n", + "\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import numpy as np\n", + "from omegaconf import OmegaConf\n", + "\n", + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "from importlib.util import find_spec\n", + "if find_spec(\"text_recognizer\") is None:\n", + " import sys\n", + " sys.path.append('..')" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "ccdb6dde-47e5-429a-88f2-0764fb7e259a", + "metadata": {}, + "outputs": [], + "source": [ + "from hydra import compose, initialize\n", + "from omegaconf import OmegaConf\n", + "from hydra.utils import instantiate" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "3cf50475-39f2-4642-a7d1-5bcbc0a036f7", + "metadata": {}, + "outputs": [], + "source": [ + "path = \"../training/conf/network/convnext.yaml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "e52ecb01-c975-4e55-925d-1182c7aea473", + "metadata": {}, + "outputs": [], + "source": [ + "with open(path, \"rb\") as f:\n", + " cfg = OmegaConf.load(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "f939aa37-7b1d-45cc-885c-323c4540bda1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'_target_': 'text_recognizer.network.convnext.ConvNext', 'dim': 16, 'dim_mults': [2, 4, 8], 'depths': [3, 3, 6], 'downsampling_factors': [[2, 2], [2, 2], [2, 2]], 'attn': {'_target_': 'text_recognizer.network.convnext.TransformerBlock', 'attn': {'_target_': 'text_recognizer.network.convnext.Attention', 'dim': 128, 'heads': 4, 'dim_head': 64, 'scale': 8}, 'ff': {'_target_': 'text_recognizer.network.convnext.FeedForward', 'dim': 128, 'mult': 4}}}" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cfg" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "a2b420c1", + "metadata": {}, + "outputs": [], + "source": [ + "cfg.dim_mults = [2, 4, 8, 8]\n", + "cfg.depths = [3, 3, 6, 6]\n", + "cfg.downsampling_factors = [[2, 2], [2, 2], [2, 2], [2, 1]]" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "c9589350", + "metadata": {}, + "outputs": [], + "source": [ + "net = instantiate(cfg)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "618b997c-e6a6-4487-b70c-9d260cb556d3", + "metadata": {}, + "outputs": [], + "source": [ + "from torchinfo import summary" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "25759b7b-8deb-4163-b75d-a1357c9fe88f", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "====================================================================================================\n", + "Layer (type:depth-idx) Output Shape Param #\n", + "====================================================================================================\n", + "ConvNext [2, 128, 72, 80] 165,408\n", + "├─TransformerBlock: 1-5 [2, 128, 72, 80] (recursive)\n", + "│ └─Attention: 2-6 [2, 128, 72, 80] (recursive)\n", + "│ │ └─LayerNorm: 3-13 [2, 128, 72, 80] (recursive)\n", + "├─Conv2d: 1-3 [2, 16, 576, 640] (recursive)\n", + "├─TransformerBlock: 1 -- --\n", + "│ └─Attention: 2 -- --\n", + "│ │ └─Conv2d: 3-15 [2, 128, 72, 80] (recursive)\n", + "│ └─FeedForward: 2-7 [2, 128, 72, 80] (recursive)\n", + "│ │ └─Residual: 3-16 [2, 128, 72, 80] (recursive)\n", + "│ │ │ └─Sequential: 4-26 [2, 128, 72, 80] (recursive)\n", + "├─Conv2d: 1-3 [2, 16, 576, 640] (recursive)\n", + "├─ModuleList: 1-4 -- --\n", + "│ └─ModuleList: 2-3 -- --\n", + "│ │ └─ConvNextBlock: 3-4 [2, 16, 576, 640] --\n", + "│ │ │ └─Conv2d: 4-2 [2, 16, 576, 640] 800\n", + "│ │ │ └─Sequential: 4-3 [2, 16, 576, 640] 9,280\n", + "│ │ │ └─Identity: 4-4 [2, 16, 576, 640] --\n", + "│ │ └─ModuleList: 3-5 -- --\n", + "│ │ │ └─ConvNextBlock: 4-5 [2, 16, 576, 640] 10,080\n", + "│ │ │ └─ConvNextBlock: 4-6 [2, 16, 576, 640] 10,080\n", + "│ │ │ └─ConvNextBlock: 4-7 [2, 16, 576, 640] 10,080\n", + "│ │ └─Downsample: 3-6 [2, 32, 288, 320] --\n", + "│ │ │ └─Sequential: 4-8 [2, 32, 288, 320] 2,080\n", + "│ └─ModuleList: 2-4 -- --\n", + "│ │ └─ConvNextBlock: 3-7 [2, 32, 288, 320] --\n", + "│ │ │ └─Conv2d: 4-9 [2, 32, 288, 320] 1,600\n", + "│ │ │ └─Sequential: 4-10 [2, 32, 288, 320] 36,992\n", + "│ │ │ └─Identity: 4-11 [2, 32, 288, 320] --\n", + "│ │ └─ModuleList: 3-8 -- --\n", + "│ │ │ └─ConvNextBlock: 4-12 [2, 32, 288, 320] 38,592\n", + "│ │ │ └─ConvNextBlock: 4-13 [2, 32, 288, 320] 38,592\n", + "│ │ │ └─ConvNextBlock: 4-14 [2, 32, 288, 320] 38,592\n", + "│ │ └─Downsample: 3-9 [2, 64, 144, 160] --\n", + "│ │ │ └─Sequential: 4-15 [2, 64, 144, 160] 8,256\n", + "│ └─ModuleList: 2-5 -- --\n", + "│ │ └─ConvNextBlock: 3-10 [2, 64, 144, 160] --\n", + "│ │ │ └─Conv2d: 4-16 [2, 64, 144, 160] 3,200\n", + "│ │ │ └─Sequential: 4-17 [2, 64, 144, 160] 147,712\n", + "│ │ │ └─Identity: 4-18 [2, 64, 144, 160] --\n", + "│ │ └─ModuleList: 3-11 -- --\n", + "│ │ │ └─ConvNextBlock: 4-19 [2, 64, 144, 160] 150,912\n", + "│ │ │ └─ConvNextBlock: 4-20 [2, 64, 144, 160] 150,912\n", + "│ │ │ └─ConvNextBlock: 4-21 [2, 64, 144, 160] 150,912\n", + "│ │ │ └─ConvNextBlock: 4-22 [2, 64, 144, 160] 150,912\n", + "│ │ │ └─ConvNextBlock: 4-23 [2, 64, 144, 160] 150,912\n", + "│ │ │ └─ConvNextBlock: 4-24 [2, 64, 144, 160] 150,912\n", + "│ │ └─Downsample: 3-12 [2, 128, 72, 80] --\n", + "│ │ │ └─Sequential: 4-25 [2, 128, 72, 80] 32,896\n", + "├─TransformerBlock: 1-5 [2, 128, 72, 80] (recursive)\n", + "│ └─Attention: 2-6 [2, 128, 72, 80] (recursive)\n", + "│ │ └─LayerNorm: 3-13 [2, 128, 72, 80] (recursive)\n", + "│ │ └─Conv2d: 3-14 [2, 768, 72, 80] 98,304\n", + "│ │ └─Conv2d: 3-15 [2, 128, 72, 80] (recursive)\n", + "│ └─FeedForward: 2-7 [2, 128, 72, 80] (recursive)\n", + "│ │ └─Residual: 3-16 [2, 128, 72, 80] (recursive)\n", + "│ │ │ └─Sequential: 4-26 [2, 128, 72, 80] (recursive)\n", + "├─LayerNorm: 1-6 [2, 128, 72, 80] 128\n", + "====================================================================================================\n", + "Total params: 1,558,144\n", + "Trainable params: 1,558,144\n", + "Non-trainable params: 0\n", + "Total mult-adds (G): 114.00\n", + "====================================================================================================\n", + "Input size (MB): 2.95\n", + "Forward/backward pass size (MB): 3822.06\n", + "Params size (MB): 5.57\n", + "Estimated Total Size (MB): 3830.58\n", + "====================================================================================================" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "summary(net, (2, 1, 576, 640), device=\"cpu\", depth=4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "05c1d499", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/text_recognizer/network/convnext/__init__.py b/text_recognizer/network/convnext/__init__.py new file mode 100644 index 0000000..dcff3fc --- /dev/null +++ b/text_recognizer/network/convnext/__init__.py @@ -0,0 +1,7 @@ +"""Convnext module.""" +from text_recognizer.network.convnext.attention import ( + Attention, + FeedForward, + TransformerBlock, +) +from text_recognizer.network.convnext.convnext import ConvNext diff --git a/text_recognizer/network/convnext/attention.py b/text_recognizer/network/convnext/attention.py new file mode 100644 index 0000000..6bc9692 --- /dev/null +++ b/text_recognizer/network/convnext/attention.py @@ -0,0 +1,79 @@ +"""Convolution self attention block.""" + +import torch.nn.functional as F +from einops import rearrange +from torch import Tensor, einsum, nn + +from text_recognizer.network.convnext.norm import LayerNorm +from text_recognizer.network.convnext.residual import Residual + + +def l2norm(t: Tensor) -> Tensor: + return F.normalize(t, dim=-1) + + +class FeedForward(nn.Module): + def __init__(self, dim: int, mult: int = 4) -> None: + super().__init__() + inner_dim = int(dim * mult) + self.fn = Residual( + nn.Sequential( + LayerNorm(dim), + nn.Conv2d(dim, inner_dim, 1, bias=False), + nn.GELU(), + LayerNorm(inner_dim), + nn.Conv2d(inner_dim, dim, 1, bias=False), + ) + ) + + def forward(self, x: Tensor) -> Tensor: + return self.fn(x) + + +class Attention(nn.Module): + def __init__( + self, dim: int, heads: int = 4, dim_head: int = 64, scale: int = 8 + ) -> None: + super().__init__() + self.scale = scale + self.heads = heads + inner_dim = heads * dim_head + self.norm = LayerNorm(dim) + + self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias=False) + self.to_out = nn.Conv2d(inner_dim, dim, 1, bias=False) + + def forward(self, x: Tensor) -> Tensor: + h, w = x.shape[-2:] + + residual = x.clone() + + x = self.norm(x) + + q, k, v = self.to_qkv(x).chunk(3, dim=1) + q, k, v = map( + lambda t: rearrange(t, "b (h c) ... -> b h (...) c", h=self.heads), + (q, k, v), + ) + + q, k = map(l2norm, (q, k)) + + sim = einsum("b h i d, b h j d -> b h i j", q, k) * self.scale + attn = sim.softmax(dim=-1) + + out = einsum("b h i j, b h j d -> b h i d", attn, v) + + out = rearrange(out, "b h (x y) d -> b (h d) x y", x=h, y=w) + return self.to_out(out) + residual + + +class TransformerBlock(nn.Module): + def __init__(self, attn: Attention, ff: FeedForward) -> None: + super().__init__() + self.attn = attn + self.ff = ff + + def forward(self, x: Tensor) -> Tensor: + x = self.attn(x) + x = self.ff(x) + return x diff --git a/text_recognizer/network/convnext/convnext.py b/text_recognizer/network/convnext/convnext.py new file mode 100644 index 0000000..6acf059 --- /dev/null +++ b/text_recognizer/network/convnext/convnext.py @@ -0,0 +1,77 @@ +"""ConvNext module.""" +from typing import Optional, Sequence + +from torch import Tensor, nn + +from text_recognizer.network.convnext.attention import TransformerBlock +from text_recognizer.network.convnext.downsample import Downsample +from text_recognizer.network.convnext.norm import LayerNorm + + +class ConvNextBlock(nn.Module): + """ConvNext block.""" + + def __init__(self, dim: int, dim_out: int, mult: int) -> None: + super().__init__() + self.ds_conv = nn.Conv2d( + dim, dim, kernel_size=(7, 7), padding="same", groups=dim + ) + self.net = nn.Sequential( + LayerNorm(dim), + nn.Conv2d(dim, dim_out * mult, kernel_size=(3, 3), padding="same"), + nn.GELU(), + nn.Conv2d(dim_out * mult, dim_out, kernel_size=(3, 3), padding="same"), + ) + self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() + + def forward(self, x: Tensor) -> Tensor: + h = self.ds_conv(x) + h = self.net(h) + return h + self.res_conv(x) + + +class ConvNext(nn.Module): + def __init__( + self, + dim: int = 16, + dim_mults: Sequence[int] = (2, 4, 8), + depths: Sequence[int] = (3, 3, 6), + downsampling_factors: Sequence[Sequence[int]] = ((2, 2), (2, 2), (2, 2)), + attn: Optional[TransformerBlock] = None, + ) -> None: + super().__init__() + dims = (dim, *map(lambda m: m * dim, dim_mults)) + self.attn = attn if attn is not None else nn.Identity() + self.out_channels = dims[-1] + self.stem = nn.Conv2d(1, dims[0], kernel_size=7, padding="same") + self.layers = nn.ModuleList([]) + + for i in range(len(dims) - 1): + dim_in, dim_out = dims[i], dims[i + 1] + self.layers.append( + nn.ModuleList( + [ + ConvNextBlock(dim_in, dim_in, 2), + nn.ModuleList( + [ConvNextBlock(dim_in, dim_in, 2) for _ in range(depths[i])] + ), + Downsample(dim_in, dim_out, downsampling_factors[i]), + ] + ) + ) + self.norm = LayerNorm(dims[-1]) + + def _init_weights(self, m): + if isinstance(m, (nn.Conv2d, nn.Linear)): + nn.init.trunc_normal_(m.weight, std=0.02) + nn.init.constant_(m.bias, 0) + + def forward(self, x: Tensor) -> Tensor: + x = self.stem(x) + for init_block, blocks, down in self.layers: + x = init_block(x) + for fn in blocks: + x = fn(x) + x = down(x) + x = self.attn(x) + return self.norm(x) diff --git a/text_recognizer/network/convnext/downsample.py b/text_recognizer/network/convnext/downsample.py new file mode 100644 index 0000000..a8a0466 --- /dev/null +++ b/text_recognizer/network/convnext/downsample.py @@ -0,0 +1,21 @@ +"""Convnext downsample module.""" +from typing import Tuple + +from einops.layers.torch import Rearrange +from torch import Tensor, nn + + +class Downsample(nn.Module): + """Downsamples feature maps by patches.""" + + def __init__(self, dim: int, dim_out: int, factors: Tuple[int, int]) -> None: + super().__init__() + s1, s2 = factors + self.fn = nn.Sequential( + Rearrange("b c (h s1) (w s2) -> b (c s1 s2) h w", s1=s1, s2=s2), + nn.Conv2d(dim * s1 * s2, dim_out, 1), + ) + + def forward(self, x: Tensor) -> Tensor: + """Applies patch function.""" + return self.fn(x) diff --git a/text_recognizer/network/convnext/norm.py b/text_recognizer/network/convnext/norm.py new file mode 100644 index 0000000..3355de9 --- /dev/null +++ b/text_recognizer/network/convnext/norm.py @@ -0,0 +1,18 @@ +"""Layer norm for conv layers.""" +import torch +from torch import Tensor, nn + + +class LayerNorm(nn.Module): + """Layer norm for convolutions.""" + + def __init__(self, dim: int) -> None: + super().__init__() + self.gamma = nn.Parameter(torch.ones(1, dim, 1, 1)) + + def forward(self, x: Tensor) -> Tensor: + """Applies layer norm.""" + eps = 1e-5 if x.dtype == torch.float32 else 1e-3 + var = torch.var(x, dim=1, unbiased=False, keepdim=True) + mean = torch.mean(x, dim=1, keepdim=True) + return (x - mean) / (var + eps).sqrt() * self.gamma diff --git a/text_recognizer/network/convnext/residual.py b/text_recognizer/network/convnext/residual.py new file mode 100644 index 0000000..dfc2847 --- /dev/null +++ b/text_recognizer/network/convnext/residual.py @@ -0,0 +1,16 @@ +"""Generic residual layer.""" +from typing import Callable + +from torch import Tensor, nn + + +class Residual(nn.Module): + """Residual layer.""" + + def __init__(self, fn: Callable) -> None: + super().__init__() + self.fn = fn + + def forward(self, x: Tensor) -> Tensor: + """Applies residual fn.""" + return self.fn(x) + x |