diff options
| author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-05-02 22:57:17 +0200 | 
|---|---|---|
| committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-05-02 22:57:17 +0200 | 
| commit | 5108e57aad2427c7e47061f7251ebfdc4bb6eedc (patch) | |
| tree | cb33d220204d2171132b63c188d020c69392929a | |
| parent | 9167fa2cf2967fcc4288cb8432f62a69bd2dde35 (diff) | |
Updated todos in readme
| -rw-r--r-- | README.md | 34 | ||||
| -rw-r--r-- | notebooks/00-testing-stuff-out.ipynb | 14 | 
2 files changed, 15 insertions, 33 deletions
@@ -11,44 +11,26 @@ TBC  Extract text from the iam dataset:  ``` -poetry run extract-iam-text --use_words --save_text train.txt --save_tokens letters.txt +poetry run python extract-iam-text --use_words --save_text train.txt --save_tokens letters.txt  ```  Create word pieces from the extracted training text:  ``` -poetry run make-wordpieces --output_prefix iamdb_1kwp --text_file train.txt --num_pieces 100 +poetry run python make-wordpieces --output_prefix iamdb_1kwp --text_file train.txt --num_pieces 100  ```  Optionally, build a transition graph for word pieces:  ``` -poetry run build-transitions --tokens iamdb_1kwp_tokens_1000.txt --lexicon iamdb_1kwp_lex_1000.txt --blank optional --self_loops --save_path 1kwp_prune_0_10_optblank.bin --prune 0 10 +poetry run python build-transitions --tokens iamdb_1kwp_tokens_1000.txt --lexicon iamdb_1kwp_lex_1000.txt --blank optional --self_loops --save_path 1kwp_prune_0_10_optblank.bin --prune 0 10  ```  (TODO: Not working atm, needed for GTN loss function)  ## Todo -- [x] create wordpieces -  - [x] make_wordpieces.py -  - [x] build_transitions.py -  - [x] transform that encodes iam targets to wordpieces -  - [x] transducer loss function -- [ ] Train with word pieces -  - [ ] Pad word pieces index to same length -- [ ] Local attention in first layer of transformer -- [ ] Halonet encoder -- [ ] Implement CPC -  - [ ] https://arxiv.org/pdf/1905.09272.pdf -  - [ ] https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html?highlight=byol - - -- [ ] Predictive coding -  - https://arxiv.org/pdf/1807.03748.pdf -  - https://arxiv.org/pdf/1904.05862.pdf -  - https://arxiv.org/pdf/1910.05453.pdf -  - https://blog.evjang.com/2016/11/tutorial-categorical-variational.html - - - - +- [ ] Reimplement transformer from scratch +- [ ] Implement Nyström attention (for efficient attention) +- [ ] Dino  +- [ ] Efficient-net b0 + transformer decoder +- [ ] Test encoder pre-training ViT (CvT?) with Dino, then train decoder in a separate step  ## Run Sweeps diff --git a/notebooks/00-testing-stuff-out.ipynb b/notebooks/00-testing-stuff-out.ipynb index 92faaf7..12c5145 100644 --- a/notebooks/00-testing-stuff-out.ipynb +++ b/notebooks/00-testing-stuff-out.ipynb @@ -420,7 +420,7 @@    },    {     "cell_type": "code", -   "execution_count": 24, +   "execution_count": 2,     "metadata": {},     "outputs": [],     "source": [ @@ -478,7 +478,7 @@    },    {     "cell_type": "code", -   "execution_count": 32, +   "execution_count": 4,     "metadata": {},     "outputs": [],     "source": [ @@ -487,26 +487,26 @@    },    {     "cell_type": "code", -   "execution_count": 35, +   "execution_count": 5,     "metadata": {},     "outputs": [],     "source": [ -    "patch_size=4\n", +    "patch_size=16\n",      "p = rearrange(x, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size)"     ]    },    {     "cell_type": "code", -   "execution_count": 36, +   "execution_count": 6,     "metadata": {},     "outputs": [      {       "data": {        "text/plain": [ -       "torch.Size([1, 1440, 16])" +       "torch.Size([1, 1440, 256])"        ]       }, -     "execution_count": 36, +     "execution_count": 6,       "metadata": {},       "output_type": "execute_result"      }  |