diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2022-09-27 00:12:03 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2022-09-27 00:12:03 +0200 |
commit | 63376b1c2da81c23ad5239f908b640cd42a514c7 (patch) | |
tree | 9198102fda3e1338287715b1c8f4ecb40a3e5145 /notebooks/04-convnext.ipynb | |
parent | 376b8d809608618c9a423a1e7849ceee953421f3 (diff) |
Update notebooks
Diffstat (limited to 'notebooks/04-convnext.ipynb')
-rw-r--r-- | notebooks/04-convnext.ipynb | 169 |
1 files changed, 83 insertions, 86 deletions
diff --git a/notebooks/04-convnext.ipynb b/notebooks/04-convnext.ipynb index 1779d13..b8d4e56 100644 --- a/notebooks/04-convnext.ipynb +++ b/notebooks/04-convnext.ipynb @@ -2,10 +2,19 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 14, "id": "7c02ae76-b540-4b16-9492-e9210b3b9249", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], "source": [ "import os\n", "os.environ['CUDA_VISIBLE_DEVICE'] = ''\n", @@ -28,7 +37,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 15, "id": "ccdb6dde-47e5-429a-88f2-0764fb7e259a", "metadata": {}, "outputs": [], @@ -40,7 +49,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 16, "id": "3cf50475-39f2-4642-a7d1-5bcbc0a036f7", "metadata": {}, "outputs": [], @@ -50,7 +59,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 37, "id": "e52ecb01-c975-4e55-925d-1182c7aea473", "metadata": {}, "outputs": [], @@ -61,7 +70,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 38, "id": "f939aa37-7b1d-45cc-885c-323c4540bda1", "metadata": {}, "outputs": [ @@ -71,7 +80,7 @@ "{'_target_': 'text_recognizer.networks.convnext.ConvNext', 'dim': 16, 'dim_mults': [2, 4, 8], 'depths': [3, 3, 6], 'downsampling_factors': [[2, 2], [2, 2], [2, 2]], 'attn': {'_target_': 'text_recognizer.networks.convnext.TransformerBlock', 'attn': {'_target_': 'text_recognizer.networks.convnext.Attention', 'dim': 128, 'heads': 4, 'dim_head': 64, 'scale': 8}, 'ff': {'_target_': 'text_recognizer.networks.convnext.FeedForward', 'dim': 128, 'mult': 4}}}" ] }, - "execution_count": 5, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -82,19 +91,19 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 19, "id": "a2b420c1", "metadata": {}, "outputs": [], "source": [ - "cfg.dim_mults = [2, 4, 8, 8, 8]\n", - "cfg.depths = [3, 3, 3, 3, 6]\n", - "cfg.downsampling_factors = [[2, 2], [2, 2], [2, 2], [2, 1], [2, 1]]" + "cfg.dim_mults = [2, 4, 8, 8]\n", + "cfg.depths = [3, 3, 6, 6]\n", + "cfg.downsampling_factors = [[2, 2], [2, 2], [2, 2], [2, 1]]" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 39, "id": "c9589350", "metadata": {}, "outputs": [], @@ -104,7 +113,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 40, "id": "618b997c-e6a6-4487-b70c-9d260cb556d3", "metadata": {}, "outputs": [], @@ -114,7 +123,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 41, "id": "25759b7b-8deb-4163-b75d-a1357c9fe88f", "metadata": { "scrolled": false @@ -126,90 +135,78 @@ "====================================================================================================\n", "Layer (type:depth-idx) Output Shape Param #\n", "====================================================================================================\n", - "ConvNext [2, 128, 18, 80] 5,969,376\n", - "├─Conv2d: 1-1 [2, 16, 576, 640] 800\n", - "├─ModuleList: 1 -- --\n", - "│ └─ModuleList: 2 -- --\n", - "│ │ └─ConvNextBlock: 3-1 [2, 16, 576, 640] --\n", - "│ │ │ └─Conv2d: 4-1 [2, 16, 576, 640] 800\n", - "│ │ │ └─Sequential: 4-2 [2, 16, 576, 640] 9,280\n", - "│ │ │ └─Identity: 4-3 [2, 16, 576, 640] --\n", - "│ │ └─ModuleList: 3 -- --\n", - "│ │ │ └─ConvNextBlock: 4-4 [2, 16, 576, 640] 10,080\n", + "ConvNext [2, 128, 72, 80] 165,408\n", + "├─TransformerBlock: 1-5 [2, 128, 72, 80] (recursive)\n", + "│ └─Attention: 2-6 [2, 128, 72, 80] (recursive)\n", + "│ │ └─LayerNorm: 3-13 [2, 128, 72, 80] (recursive)\n", + "├─Conv2d: 1-3 [2, 16, 576, 640] (recursive)\n", + "├─TransformerBlock: 1 -- --\n", + "│ └─Attention: 2 -- --\n", + "│ │ └─Conv2d: 3-15 [2, 128, 72, 80] (recursive)\n", + "│ └─FeedForward: 2-7 [2, 128, 72, 80] (recursive)\n", + "│ │ └─Residual: 3-16 [2, 128, 72, 80] (recursive)\n", + "│ │ │ └─Sequential: 4-26 [2, 128, 72, 80] (recursive)\n", + "├─Conv2d: 1-3 [2, 16, 576, 640] (recursive)\n", + "├─ModuleList: 1-4 -- --\n", + "│ └─ModuleList: 2-3 -- --\n", + "│ │ └─ConvNextBlock: 3-4 [2, 16, 576, 640] --\n", + "│ │ │ └─Conv2d: 4-2 [2, 16, 576, 640] 800\n", + "│ │ │ └─Sequential: 4-3 [2, 16, 576, 640] 9,280\n", + "│ │ │ └─Identity: 4-4 [2, 16, 576, 640] --\n", + "│ │ └─ModuleList: 3-5 -- --\n", "│ │ │ └─ConvNextBlock: 4-5 [2, 16, 576, 640] 10,080\n", "│ │ │ └─ConvNextBlock: 4-6 [2, 16, 576, 640] 10,080\n", - "│ │ └─Downsample: 3-2 [2, 32, 288, 320] --\n", - "│ │ │ └─Sequential: 4-7 [2, 32, 288, 320] 2,080\n", - "│ └─ModuleList: 2 -- --\n", - "│ │ └─ConvNextBlock: 3-3 [2, 32, 288, 320] --\n", - "│ │ │ └─Conv2d: 4-8 [2, 32, 288, 320] 1,600\n", - "│ │ │ └─Sequential: 4-9 [2, 32, 288, 320] 36,992\n", - "│ │ │ └─Identity: 4-10 [2, 32, 288, 320] --\n", - "│ │ └─ModuleList: 3 -- --\n", - "│ │ │ └─ConvNextBlock: 4-11 [2, 32, 288, 320] 38,592\n", + "│ │ │ └─ConvNextBlock: 4-7 [2, 16, 576, 640] 10,080\n", + "│ │ └─Downsample: 3-6 [2, 32, 288, 320] --\n", + "│ │ │ └─Sequential: 4-8 [2, 32, 288, 320] 2,080\n", + "│ └─ModuleList: 2-4 -- --\n", + "│ │ └─ConvNextBlock: 3-7 [2, 32, 288, 320] --\n", + "│ │ │ └─Conv2d: 4-9 [2, 32, 288, 320] 1,600\n", + "│ │ │ └─Sequential: 4-10 [2, 32, 288, 320] 36,992\n", + "│ │ │ └─Identity: 4-11 [2, 32, 288, 320] --\n", + "│ │ └─ModuleList: 3-8 -- --\n", "│ │ │ └─ConvNextBlock: 4-12 [2, 32, 288, 320] 38,592\n", "│ │ │ └─ConvNextBlock: 4-13 [2, 32, 288, 320] 38,592\n", - "│ │ └─Downsample: 3-4 [2, 64, 144, 160] --\n", - "│ │ │ └─Sequential: 4-14 [2, 64, 144, 160] 8,256\n", - "│ └─ModuleList: 2 -- --\n", - "│ │ └─ConvNextBlock: 3-5 [2, 64, 144, 160] --\n", - "│ │ │ └─Conv2d: 4-15 [2, 64, 144, 160] 3,200\n", - "│ │ │ └─Sequential: 4-16 [2, 64, 144, 160] 147,712\n", - "│ │ │ └─Identity: 4-17 [2, 64, 144, 160] --\n", - "│ │ └─ModuleList: 3 -- --\n", - "│ │ │ └─ConvNextBlock: 4-18 [2, 64, 144, 160] 150,912\n", + "│ │ │ └─ConvNextBlock: 4-14 [2, 32, 288, 320] 38,592\n", + "│ │ └─Downsample: 3-9 [2, 64, 144, 160] --\n", + "│ │ │ └─Sequential: 4-15 [2, 64, 144, 160] 8,256\n", + "│ └─ModuleList: 2-5 -- --\n", + "│ │ └─ConvNextBlock: 3-10 [2, 64, 144, 160] --\n", + "│ │ │ └─Conv2d: 4-16 [2, 64, 144, 160] 3,200\n", + "│ │ │ └─Sequential: 4-17 [2, 64, 144, 160] 147,712\n", + "│ │ │ └─Identity: 4-18 [2, 64, 144, 160] --\n", + "│ │ └─ModuleList: 3-11 -- --\n", "│ │ │ └─ConvNextBlock: 4-19 [2, 64, 144, 160] 150,912\n", "│ │ │ └─ConvNextBlock: 4-20 [2, 64, 144, 160] 150,912\n", - "│ │ └─Downsample: 3-6 [2, 128, 72, 80] --\n", - "│ │ │ └─Sequential: 4-21 [2, 128, 72, 80] 32,896\n", - "│ └─ModuleList: 2 -- --\n", - "│ │ └─ConvNextBlock: 3-7 [2, 128, 72, 80] --\n", - "│ │ │ └─Conv2d: 4-22 [2, 128, 72, 80] 6,400\n", - "│ │ │ └─Sequential: 4-23 [2, 128, 72, 80] 590,336\n", - "│ │ │ └─Identity: 4-24 [2, 128, 72, 80] --\n", - "│ │ └─ModuleList: 3 -- --\n", - "│ │ │ └─ConvNextBlock: 4-25 [2, 128, 72, 80] 596,736\n", - "│ │ │ └─ConvNextBlock: 4-26 [2, 128, 72, 80] 596,736\n", - "│ │ │ └─ConvNextBlock: 4-27 [2, 128, 72, 80] 596,736\n", - "│ │ └─Downsample: 3-8 [2, 128, 36, 80] --\n", - "│ │ │ └─Sequential: 4-28 [2, 128, 36, 80] 32,896\n", - "│ └─ModuleList: 2 -- --\n", - "│ │ └─ConvNextBlock: 3-9 [2, 128, 36, 80] --\n", - "│ │ │ └─Conv2d: 4-29 [2, 128, 36, 80] 6,400\n", - "│ │ │ └─Sequential: 4-30 [2, 128, 36, 80] 590,336\n", - "│ │ │ └─Identity: 4-31 [2, 128, 36, 80] --\n", - "│ │ └─ModuleList: 3 -- --\n", - "│ │ │ └─ConvNextBlock: 4-32 [2, 128, 36, 80] 596,736\n", - "│ │ │ └─ConvNextBlock: 4-33 [2, 128, 36, 80] 596,736\n", - "│ │ │ └─ConvNextBlock: 4-34 [2, 128, 36, 80] 596,736\n", - "│ │ │ └─ConvNextBlock: 4-35 [2, 128, 36, 80] 596,736\n", - "│ │ │ └─ConvNextBlock: 4-36 [2, 128, 36, 80] 596,736\n", - "│ │ │ └─ConvNextBlock: 4-37 [2, 128, 36, 80] 596,736\n", - "│ │ └─Downsample: 3-10 [2, 128, 18, 80] --\n", - "│ │ │ └─Sequential: 4-38 [2, 128, 18, 80] 32,896\n", - "├─TransformerBlock: 1-2 [2, 128, 18, 80] --\n", - "│ └─Attention: 2-1 [2, 128, 18, 80] --\n", - "│ │ └─LayerNorm: 3-11 [2, 128, 18, 80] 128\n", - "│ │ └─Conv2d: 3-12 [2, 768, 18, 80] 98,304\n", - "│ │ └─Conv2d: 3-13 [2, 128, 18, 80] 32,768\n", - "│ └─FeedForward: 2-2 [2, 128, 18, 80] --\n", - "│ │ └─Residual: 3-14 [2, 128, 18, 80] --\n", - "│ │ │ └─Sequential: 4-39 [2, 128, 18, 80] 131,712\n", - "├─LayerNorm: 1-3 [2, 128, 18, 80] 128\n", + "│ │ │ └─ConvNextBlock: 4-21 [2, 64, 144, 160] 150,912\n", + "│ │ │ └─ConvNextBlock: 4-22 [2, 64, 144, 160] 150,912\n", + "│ │ │ └─ConvNextBlock: 4-23 [2, 64, 144, 160] 150,912\n", + "│ │ │ └─ConvNextBlock: 4-24 [2, 64, 144, 160] 150,912\n", + "│ │ └─Downsample: 3-12 [2, 128, 72, 80] --\n", + "│ │ │ └─Sequential: 4-25 [2, 128, 72, 80] 32,896\n", + "├─TransformerBlock: 1-5 [2, 128, 72, 80] (recursive)\n", + "│ └─Attention: 2-6 [2, 128, 72, 80] (recursive)\n", + "│ │ └─LayerNorm: 3-13 [2, 128, 72, 80] (recursive)\n", + "│ │ └─Conv2d: 3-14 [2, 768, 72, 80] 98,304\n", + "│ │ └─Conv2d: 3-15 [2, 128, 72, 80] (recursive)\n", + "│ └─FeedForward: 2-7 [2, 128, 72, 80] (recursive)\n", + "│ │ └─Residual: 3-16 [2, 128, 72, 80] (recursive)\n", + "│ │ │ └─Sequential: 4-26 [2, 128, 72, 80] (recursive)\n", + "├─LayerNorm: 1-6 [2, 128, 72, 80] 128\n", "====================================================================================================\n", - "Total params: 7,735,296\n", - "Trainable params: 7,735,296\n", + "Total params: 1,558,144\n", + "Trainable params: 1,558,144\n", "Non-trainable params: 0\n", - "Total mult-adds (G): 140.23\n", + "Total mult-adds (G): 114.00\n", "====================================================================================================\n", "Input size (MB): 2.95\n", - "Forward/backward pass size (MB): 3987.21\n", - "Params size (MB): 30.94\n", - "Estimated Total Size (MB): 4021.10\n", + "Forward/backward pass size (MB): 3822.06\n", + "Params size (MB): 5.57\n", + "Estimated Total Size (MB): 3830.58\n", "====================================================================================================" ] }, - "execution_count": 13, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -221,7 +218,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7a7e27f4", + "id": "05c1d499", "metadata": {}, "outputs": [], "source": [] |