summaryrefslogtreecommitdiff
path: root/src/text_recognizer/networks/line_lstm_ctc.py
diff options
context:
space:
mode:
authoraktersnurra <gustaf.rydholm@gmail.com>2020-09-08 23:14:23 +0200
committeraktersnurra <gustaf.rydholm@gmail.com>2020-09-08 23:14:23 +0200
commite1b504bca41a9793ed7e88ef14f2e2cbd85724f2 (patch)
tree70b482f890c9ad2be104f0bff8f2172e8411a2be /src/text_recognizer/networks/line_lstm_ctc.py
parentfe23001b6588e6e6e9e2c5a99b72f3445cf5206f (diff)
IAM datasets implemented.
Diffstat (limited to 'src/text_recognizer/networks/line_lstm_ctc.py')
-rw-r--r--src/text_recognizer/networks/line_lstm_ctc.py76
1 files changed, 76 insertions, 0 deletions
diff --git a/src/text_recognizer/networks/line_lstm_ctc.py b/src/text_recognizer/networks/line_lstm_ctc.py
index 2e2c3a5..988b615 100644
--- a/src/text_recognizer/networks/line_lstm_ctc.py
+++ b/src/text_recognizer/networks/line_lstm_ctc.py
@@ -1,5 +1,81 @@
"""LSTM with CTC for handwritten text recognition within a line."""
+import importlib
+from typing import Callable, Dict, List, Optional, Tuple, Type, Union
+from einops import rearrange, reduce
+from einops.layers.torch import Rearrange, Reduce
import torch
from torch import nn
from torch import Tensor
+
+
+class LineRecurrentNetwork(nn.Module):
+ """Network that takes a image of a text line and predicts tokens that are in the image."""
+
+ def __init__(
+ self,
+ encoder: str,
+ encoder_args: Dict = None,
+ flatten: bool = True,
+ input_size: int = 128,
+ hidden_size: int = 128,
+ num_layers: int = 1,
+ num_classes: int = 80,
+ patch_size: Tuple[int, int] = (28, 28),
+ stride: Tuple[int, int] = (1, 14),
+ ) -> None:
+ super().__init__()
+ self.encoder_args = encoder_args or {}
+ self.patch_size = patch_size
+ self.stride = stride
+ self.sliding_window = self._configure_sliding_window()
+ self.input_size = input_size
+ self.hidden_size = hidden_size
+ self.encoder = self._configure_encoder(encoder)
+ self.flatten = flatten
+ self.rnn = nn.LSTM(
+ input_size=self.input_size,
+ hidden_size=self.hidden_size,
+ num_layers=num_layers,
+ )
+ self.decoder = nn.Sequential(
+ nn.Linear(in_features=self.hidden_size, out_features=num_classes),
+ nn.LogSoftmax(dim=2),
+ )
+
+ def _configure_encoder(self, encoder: str) -> Type[nn.Module]:
+ network_module = importlib.import_module("text_recognizer.networks")
+ encoder_ = getattr(network_module, encoder)
+ return encoder_(**self.encoder_args)
+
+ def _configure_sliding_window(self) -> nn.Sequential:
+ return nn.Sequential(
+ nn.Unfold(kernel_size=self.patch_size, stride=self.stride),
+ Rearrange(
+ "b (c h w) t -> b t c h w",
+ h=self.patch_size[0],
+ w=self.patch_size[1],
+ c=1,
+ ),
+ )
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Converts images to sequence of patches, feeds them to a CNN, then predictions are made with an LSTM."""
+ if len(x.shape) == 3:
+ x = x.unsqueeze(0)
+ x = self.sliding_window(x)
+
+ # Rearrange from a sequence of patches for feedforward network.
+ b, t = x.shape[:2]
+ x = rearrange(x, "b t c h w -> (b t) c h w", b=b, t=t)
+ x = self.encoder(x)
+
+ # Avgerage pooling.
+ x = reduce(x, "(b t) c h w -> t b c", "mean", b=b, t=t) if self.flatten else x
+
+ # Sequence predictions.
+ x, _ = self.rnn(x)
+
+ # Sequence to classifcation layer.
+ x = self.decoder(x)
+ return x