summaryrefslogtreecommitdiff
path: root/src/training/experiments/line_ctc_experiment.yml
diff options
context:
space:
mode:
authoraktersnurra <gustaf.rydholm@gmail.com>2020-09-20 00:14:27 +0200
committeraktersnurra <gustaf.rydholm@gmail.com>2020-09-20 00:14:27 +0200
commite181195a699d7fa237f256d90ab4dedffc03d405 (patch)
tree6d8d50731a7267c56f7bf3ed5ecec3990c0e55a5 /src/training/experiments/line_ctc_experiment.yml
parent3b06ef615a8db67a03927576e0c12fbfb2501f5f (diff)
Minor bug fixes etc.
Diffstat (limited to 'src/training/experiments/line_ctc_experiment.yml')
-rw-r--r--src/training/experiments/line_ctc_experiment.yml97
1 files changed, 45 insertions, 52 deletions
diff --git a/src/training/experiments/line_ctc_experiment.yml b/src/training/experiments/line_ctc_experiment.yml
index c21c6a2..432d1cc 100644
--- a/src/training/experiments/line_ctc_experiment.yml
+++ b/src/training/experiments/line_ctc_experiment.yml
@@ -1,55 +1,46 @@
-experiment_group: Sample Experiments
+experiment_group: Lines Experiments
experiments:
- train_args:
- batch_size: 64
- max_epochs: 32
+ batch_size: 42
+ max_epochs: &max_epochs 32
dataset:
- type: EmnistLinesDataset
+ type: IamLinesDataset
args:
- subsample_fraction: 0.33
- max_length: 34
- min_overlap: 0
- max_overlap: 0.33
- num_samples: 10000
- seed: 4711
- blank: true
+ subsample_fraction: null
+ transform: null
+ target_transform: null
train_args:
- num_workers: 6
+ num_workers: 8
train_fraction: 0.85
model: LineCTCModel
metrics: [cer, wer]
network:
type: LineRecurrentNetwork
args:
- # encoder: ResidualNetworkEncoder
- # encoder_args:
- # in_channels: 1
- # num_classes: 81
- # depths: [2, 2]
- # block_sizes: [64, 128]
- # activation: SELU
- # stn: false
- encoder: WideResidualNetwork
- encoder_args:
+ backbone: ResidualNetwork
+ backbone_args:
in_channels: 1
- num_classes: 81
- depth: 16
- num_layers: 4
- width_factor: 2
- dropout_rate: 0.2
+ num_classes: 64 # Embedding
+ depths: [2,2]
+ block_sizes: [32,64]
activation: selu
- use_decoder: false
- flatten: true
- input_size: 256
- hidden_size: 128
+ stn: false
+ # encoder: ResidualNetwork
+ # encoder_args:
+ # pretrained: training/experiments/CharacterModel_EmnistDataset_ResidualNetwork/0917_203601/model/best.pt
+ # freeze: false
+ flatten: false
+ input_size: 64
+ hidden_size: 64
+ bidirectional: true
num_layers: 2
- num_classes: 81
- patch_size: [28, 14]
- stride: [1, 5]
+ num_classes: 80
+ patch_size: [28, 18]
+ stride: [1, 4]
criterion:
type: CTCLoss
args:
- blank: 80
+ blank: 79
optimizer:
type: AdamW
args:
@@ -58,40 +49,42 @@ experiments:
eps: 1.e-08
weight_decay: 5.e-4
amsgrad: false
- # lr_scheduler:
- # type: OneCycleLR
- # args:
- # max_lr: 1.e-03
- # epochs: null
- # anneal_strategy: linear
lr_scheduler:
- type: CosineAnnealingLR
+ type: OneCycleLR
args:
- T_max: null
+ max_lr: 1.e-02
+ epochs: *max_epochs
+ anneal_strategy: cos
+ pct_start: 0.475
+ cycle_momentum: true
+ base_momentum: 0.85
+ max_momentum: 0.9
+ div_factor: 10
+ final_div_factor: 10000
+ interval: step
+ # lr_scheduler:
+ # type: CosineAnnealingLR
+ # args:
+ # T_max: *max_epochs
swa_args:
- start: 4
+ start: 24
lr: 5.e-2
- callbacks: [Checkpoint, ProgressBar, WandbCallback, WandbImageLogger, SWA] # EarlyStopping, OneCycleLR]
+ callbacks: [Checkpoint, ProgressBar, WandbCallback, WandbImageLogger] # EarlyStopping]
callback_args:
Checkpoint:
monitor: val_loss
mode: min
ProgressBar:
- epochs: null
- log_batch_frequency: 100
+ epochs: *max_epochs
# EarlyStopping:
# monitor: val_loss
# min_delta: 0.0
- # patience: 5
+ # patience: 10
# mode: min
WandbCallback:
log_batch_frequency: 10
WandbImageLogger:
num_examples: 6
- # OneCycleLR:
- # null
- SWA:
- null
verbosity: 1 # 0, 1, 2
resume_experiment: null
test: true