diff options
| author | aktersnurra <gustaf.rydholm@gmail.com> | 2020-09-08 23:14:23 +0200 | 
|---|---|---|
| committer | aktersnurra <gustaf.rydholm@gmail.com> | 2020-09-08 23:14:23 +0200 | 
| commit | e1b504bca41a9793ed7e88ef14f2e2cbd85724f2 (patch) | |
| tree | 70b482f890c9ad2be104f0bff8f2172e8411a2be /src/training/experiments | |
| parent | fe23001b6588e6e6e9e2c5a99b72f3445cf5206f (diff) | |
IAM datasets implemented.
Diffstat (limited to 'src/training/experiments')
| -rw-r--r-- | src/training/experiments/sample_experiment.yml | 127 | 
1 files changed, 73 insertions, 54 deletions
diff --git a/src/training/experiments/sample_experiment.yml b/src/training/experiments/sample_experiment.yml index b00bd5a..17e220e 100644 --- a/src/training/experiments/sample_experiment.yml +++ b/src/training/experiments/sample_experiment.yml @@ -1,17 +1,20 @@  experiment_group: Sample Experiments  experiments: -    - dataset: EmnistDataset -      dataset_args: -        sample_to_balance: true -        subsample_fraction: null -        transform: null -        target_transform: null -        seed: 4711 -      data_loader_args: -        splits: [train, val] -        shuffle: true -        num_workers: 8 -        cuda: true +    - train_args: +        batch_size: 256 +        max_epochs: 32 +      dataset: +        type: EmnistDataset +        args: +          sample_to_balance: true +          subsample_fraction: null +          transform: null +          target_transform: null +          seed: 4711 +        train_args: +          num_workers: 6 +          train_fraction: 0.8 +        model: CharacterModel        metrics: [accuracy]        # network: MLP @@ -19,65 +22,81 @@ experiments:        #   input_size: 784        #   hidden_size: 512        #   output_size: 80 -      #   num_layers: 3 -      #   dropout_rate: 0 +      #   num_layers: 5 +      #   dropout_rate: 0.2        #   activation_fn: SELU -      network: ResidualNetwork -      network_args: -        in_channels: 1 -        num_classes: 80 -        depths: [2, 1] -        block_sizes: [96, 32] +      network: +        type: ResidualNetwork +        args: +          in_channels: 1 +          num_classes: 80 +          depths: [2, 2] +          block_sizes: [64, 64] +          activation: leaky_relu +          stn: true +      # network: +      #   type: WideResidualNetwork +      #   args: +      #     in_channels: 1 +      #     num_classes: 80 +      #     depth: 10 +      #     num_layers: 3 +      #     width_factor: 4 +      #     dropout_rate: 0.2 +      #     activation: SELU        # network: LeNet        # network_args:        #   output_size: 62        #   activation_fn: GELU -      train_args: -        batch_size: 256 -        epochs: 32 -      criterion: CrossEntropyLoss -      criterion_args: -        weight: null -        ignore_index: -100 -        reduction: mean -      # optimizer: RMSprop -      # optimizer_args: -      #   lr: 1.e-3 -      #   alpha: 0.9 -      #   eps: 1.e-7 -      #   momentum: 0 -      #   weight_decay: 0 -      #   centered: false -      optimizer: AdamW -      optimizer_args: -        lr: 1.e-03 -        betas: [0.9, 0.999] -        eps: 1.e-08 -        # weight_decay: 5.e-4 -        amsgrad: false -      # lr_scheduler: null -      lr_scheduler: OneCycleLR -      lr_scheduler_args: -        max_lr: 1.e-03 -        epochs: 32 -        anneal_strategy: linear -      callbacks: [Checkpoint, ProgressBar, EarlyStopping, WandbCallback, WandbImageLogger, OneCycleLR] +      criterion: +        type: CrossEntropyLoss +        args: +          weight: null +          ignore_index: -100 +          reduction: mean +      optimizer: +        type: AdamW +        args: +          lr: 1.e-02 +          betas: [0.9, 0.999] +          eps: 1.e-08 +          # weight_decay: 5.e-4 +          amsgrad: false +      # lr_scheduler: +      #   type: OneCycleLR +      #   args: +      #     max_lr: 1.e-03 +      #     epochs: null +      #     anneal_strategy: linear +      lr_scheduler: +        type: CosineAnnealingLR +        args: +          T_max: null +      swa_args: +        start: 2 +        lr: 5.e-2 +      callbacks: [Checkpoint, ProgressBar, WandbCallback, WandbImageLogger, EarlyStopping, SWA] # OneCycleLR]        callback_args:          Checkpoint:            monitor: val_accuracy          ProgressBar: -          epochs: 32 +          epochs: null            log_batch_frequency: 100          EarlyStopping:            monitor: val_loss            min_delta: 0.0 -          patience: 3 +          patience: 5            mode: min          WandbCallback:            log_batch_frequency: 10          WandbImageLogger:            num_examples: 4 -        OneCycleLR: +          use_transpose: true +        # OneCycleLR: +        #   null +        SWA:            null -      verbosity: 1 # 0, 1, 2 +      verbosity: 0 # 0, 1, 2        resume_experiment: null +      test: true +      test_metric: test_accuracy  |