summaryrefslogtreecommitdiff
path: root/text_recognizer/criterions
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2021-09-30 23:02:48 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2021-09-30 23:02:48 +0200
commit3c41a7061e5bf6c648e7c7216d64c29dc342a0ca (patch)
treea5788389a063a6c0d955c91c576e7372aa788bd9 /text_recognizer/criterions
parent08d73ff01e5e0590e11d5d44a3c85a16bca76ce5 (diff)
Rename vqloss to commitment loss
Diffstat (limited to 'text_recognizer/criterions')
-rw-r--r--text_recognizer/criterions/vqgan_loss.py22
1 files changed, 11 insertions, 11 deletions
diff --git a/text_recognizer/criterions/vqgan_loss.py b/text_recognizer/criterions/vqgan_loss.py
index 7af1a55..9d1cddd 100644
--- a/text_recognizer/criterions/vqgan_loss.py
+++ b/text_recognizer/criterions/vqgan_loss.py
@@ -24,7 +24,7 @@ class VQGANLoss(nn.Module):
self,
reconstruction_loss: nn.L1Loss,
discriminator: NLayerDiscriminator,
- vq_loss_weight: float = 1.0,
+ commitment_weight: float = 1.0,
discriminator_weight: float = 1.0,
discriminator_factor: float = 1.0,
discriminator_iter_start: int = 1000,
@@ -32,7 +32,7 @@ class VQGANLoss(nn.Module):
super().__init__()
self.reconstruction_loss = reconstruction_loss
self.discriminator = discriminator
- self.vq_loss_weight = vq_loss_weight
+ self.commitment_weight = commitment_weight
self.discriminator_weight = discriminator_weight
self.discriminator_factor = discriminator_factor
self.discriminator_iter_start = discriminator_iter_start
@@ -61,20 +61,18 @@ class VQGANLoss(nn.Module):
self,
data: Tensor,
reconstructions: Tensor,
- vq_loss: Tensor,
+ commitment_loss: Tensor,
decoder_last_layer: Tensor,
optimizer_idx: int,
global_step: int,
stage: str,
) -> Optional[Tuple]:
"""Calculates the VQGAN loss."""
- rec_loss: Tensor = self.reconstruction_loss(
- data.contiguous(), reconstructions.contiguous()
- )
+ rec_loss: Tensor = self.reconstruction_loss(reconstructions, data)
# GAN part.
if optimizer_idx == 0:
- logits_fake = self.discriminator(reconstructions.contiguous())
+ logits_fake = self.discriminator(reconstructions)
g_loss = -torch.mean(logits_fake)
if self.training:
@@ -93,19 +91,21 @@ class VQGANLoss(nn.Module):
)
loss: Tensor = (
- rec_loss + d_factor * d_weight * g_loss + self.vq_loss_weight * vq_loss
+ rec_loss
+ + d_factor * d_weight * g_loss
+ + self.commitment_weight * commitment_loss
)
log = {
f"{stage}/total_loss": loss,
- f"{stage}/vq_loss": vq_loss,
+ f"{stage}/commitment_loss": commitment_loss,
f"{stage}/rec_loss": rec_loss,
f"{stage}/g_loss": g_loss,
}
return loss, log
if optimizer_idx == 1:
- logits_fake = self.discriminator(reconstructions.contiguous().detach())
- logits_real = self.discriminator(data.contiguous().detach())
+ logits_fake = self.discriminator(reconstructions.detach())
+ logits_real = self.discriminator(data.detach())
d_factor = _adopt_weight(
self.discriminator_factor,