diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2022-09-27 01:44:49 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2022-09-27 01:44:49 +0200 |
commit | 9b8e14d89f0ef2508ed11f994f73af624155fe1d (patch) | |
tree | 10d9c138f4449646c8b5c0f95003ba86b831d04d /text_recognizer/data/stems/line.py | |
parent | 63376b1c2da81c23ad5239f908b640cd42a514c7 (diff) |
Update data modules
Diffstat (limited to 'text_recognizer/data/stems/line.py')
-rw-r--r-- | text_recognizer/data/stems/line.py | 86 |
1 files changed, 86 insertions, 0 deletions
diff --git a/text_recognizer/data/stems/line.py b/text_recognizer/data/stems/line.py new file mode 100644 index 0000000..2fe1a2c --- /dev/null +++ b/text_recognizer/data/stems/line.py @@ -0,0 +1,86 @@ +import random + +from PIL import Image +import torchvision.transforms as T + +import text_recognizer.metadata.iam_lines as metadata +from text_recognizer.data.stems.image import ImageStem + + +class LineStem(ImageStem): + """A stem for handling images containing a line of text.""" + + def __init__( + self, augment=False, color_jitter_kwargs=None, random_affine_kwargs=None + ): + super().__init__() + if color_jitter_kwargs is None: + color_jitter_kwargs = {"brightness": (0.5, 1)} + if random_affine_kwargs is None: + random_affine_kwargs = { + "degrees": 3, + "translate": (0, 0.05), + "scale": (0.4, 1.1), + "shear": (-40, 50), + "interpolation": T.InterpolationMode.BILINEAR, + "fill": 0, + } + + if augment: + self.pil_transforms = T.Compose( + [ + T.ColorJitter(**color_jitter_kwargs), + T.RandomAffine(**random_affine_kwargs), + ] + ) + + +class IamLinesStem(ImageStem): + """A stem for handling images containing lines of text from the IAMLines dataset.""" + + def __init__( + self, augment=False, color_jitter_kwargs=None, random_affine_kwargs=None + ): + super().__init__() + + def embed_crop(crop, augment=augment): + # crop is PIL.image of dtype="L" (so values range from 0 -> 255) + image = Image.new("L", (metadata.IMAGE_WIDTH, metadata.IMAGE_HEIGHT)) + + # Resize crop + crop_width, crop_height = crop.size + new_crop_height = metadata.IMAGE_HEIGHT + new_crop_width = int(new_crop_height * (crop_width / crop_height)) + if augment: + # Add random stretching + new_crop_width = int(new_crop_width * random.uniform(0.9, 1.1)) + new_crop_width = min(new_crop_width, metadata.IMAGE_WIDTH) + crop_resized = crop.resize( + (new_crop_width, new_crop_height), resample=Image.BILINEAR + ) + + # Embed in the image + x = min(metadata.CHAR_WIDTH, metadata.IMAGE_WIDTH - new_crop_width) + y = metadata.IMAGE_HEIGHT - new_crop_height + + image.paste(crop_resized, (x, y)) + + return image + + if color_jitter_kwargs is None: + color_jitter_kwargs = {"brightness": (0.8, 1.6)} + if random_affine_kwargs is None: + random_affine_kwargs = { + "degrees": 1, + "shear": (-30, 20), + "interpolation": T.InterpolationMode.BILINEAR, + "fill": 0, + } + + pil_transform_list = [T.Lambda(embed_crop)] + if augment: + pil_transform_list += [ + T.ColorJitter(**color_jitter_kwargs), + T.RandomAffine(**random_affine_kwargs), + ] + self.pil_transform = T.Compose(pil_transform_list) |