summaryrefslogtreecommitdiff
path: root/text_recognizer/data/tokenizer.py
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2022-09-27 23:11:06 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2022-09-27 23:11:06 +0200
commit9c7dbb9ca70858b870f74ecf595d3169f0cbc711 (patch)
treec342e2c004bb75571a380ef2805049a8fcec3fcc /text_recognizer/data/tokenizer.py
parent9b8e14d89f0ef2508ed11f994f73af624155fe1d (diff)
Rename mapping to tokenizer
Diffstat (limited to 'text_recognizer/data/tokenizer.py')
-rw-r--r--text_recognizer/data/tokenizer.py94
1 files changed, 94 insertions, 0 deletions
diff --git a/text_recognizer/data/tokenizer.py b/text_recognizer/data/tokenizer.py
new file mode 100644
index 0000000..a5f44e6
--- /dev/null
+++ b/text_recognizer/data/tokenizer.py
@@ -0,0 +1,94 @@
+"""Emnist mapping."""
+import json
+from pathlib import Path
+from typing import Dict, List, Optional, Sequence, Tuple, Union
+
+import torch
+from torch import Tensor
+
+import text_recognizer.metadata.shared as metadata
+
+
+class Tokenizer:
+ """Mapping for EMNIST labels."""
+
+ def __init__(
+ self,
+ extra_symbols: Optional[Sequence[str]] = None,
+ lower: bool = True,
+ start_token: str = "<s>",
+ end_token: str = "<e>",
+ pad_token: str = "<p>",
+ ) -> None:
+ self.extra_symbols = set(extra_symbols) if extra_symbols is not None else None
+ self.mapping, self.inverse_mapping, self.input_size = self._load_mapping()
+ self.start_token = start_token
+ self.end_token = end_token
+ self.pad_token = pad_token
+ self.start_index = int(self.get_value(self.start_token))
+ self.end_index = int(self.get_value(self.end_token))
+ self.pad_index = int(self.get_value(self.pad_token))
+ self.ignore_indices = set([self.start_index, self.end_index, self.pad_index])
+ if lower:
+ self._to_lower()
+
+ def __len__(self) -> int:
+ return len(self.mapping)
+
+ @property
+ def num_classes(self) -> int:
+ return self.__len__()
+
+ def _load_mapping(self) -> Tuple[List, Dict[str, int], List[int]]:
+ """Return the EMNIST mapping."""
+ with metadata.ESSENTIALS_FILENAME.open() as f:
+ essentials = json.load(f)
+ mapping = list(essentials["characters"])
+ if self.extra_symbols is not None:
+ mapping += self.extra_symbols
+ inverse_mapping = {v: k for k, v in enumerate(mapping)}
+ input_shape = essentials["input_shape"]
+ return mapping, inverse_mapping, input_shape
+
+ def _to_lower(self) -> None:
+ """Converts mapping to lowercase letters only."""
+
+ def _filter(x: int) -> int:
+ if 40 <= x:
+ return x - 26
+ return x
+
+ self.inverse_mapping = {v: _filter(k) for k, v in enumerate(self.mapping)}
+ self.mapping = [c for c in self.mapping if not c.isupper()]
+
+ def get_token(self, index: Union[int, Tensor]) -> str:
+ """Returns token for index value."""
+ if (index := int(index)) <= len(self.mapping):
+ return self.mapping[index]
+ raise KeyError(f"Index ({index}) not in mapping.")
+
+ def get_value(self, token: str) -> Tensor:
+ """Returns index value of token."""
+ if token in self.inverse_mapping:
+ return torch.LongTensor([self.inverse_mapping[token]])
+ raise KeyError(f"Token ({token}) not found in inverse mapping.")
+
+ def decode(self, indices: Union[List[int], Tensor]) -> str:
+ """Returns the text from a list of indices."""
+ if isinstance(indices, Tensor):
+ indices = indices.tolist()
+ return "".join(
+ [
+ self.mapping[index]
+ for index in indices
+ if index not in self.ignore_indices
+ ]
+ )
+
+ def encode(self, text: str) -> Tensor:
+ """Returns tensor of indices for a string."""
+ return Tensor([self.inverse_mapping[token] for token in text])
+
+ def __getitem__(self, x: Union[int, Tensor]) -> str:
+ """Returns text for a list of indices."""
+ return self.get_token(x)