diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-08-03 18:18:48 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-08-03 18:18:48 +0200 |
commit | bd4bd443f339e95007bfdabf3e060db720f4d4b9 (patch) | |
tree | e55cb3744904f7c2a0348b100c7e92a65e538a16 /text_recognizer/data/word_piece_mapping.py | |
parent | 75801019981492eedf9280cb352eea3d8e99b65f (diff) |
Training working, multiple bug fixes
Diffstat (limited to 'text_recognizer/data/word_piece_mapping.py')
-rw-r--r-- | text_recognizer/data/word_piece_mapping.py | 93 |
1 files changed, 93 insertions, 0 deletions
diff --git a/text_recognizer/data/word_piece_mapping.py b/text_recognizer/data/word_piece_mapping.py new file mode 100644 index 0000000..59488c3 --- /dev/null +++ b/text_recognizer/data/word_piece_mapping.py @@ -0,0 +1,93 @@ +"""Word piece mapping.""" +from pathlib import Path +from typing import List, Optional, Union, Set + +import torch +from loguru import logger as log +from torch import Tensor + +from text_recognizer.data.emnist_mapping import EmnistMapping +from text_recognizer.data.iam_preprocessor import Preprocessor + + +class WordPieceMapping(EmnistMapping): + def __init__( + self, + data_dir: Optional[Path] = None, + num_features: int = 1000, + tokens: str = "iamdb_1kwp_tokens_1000.txt", + lexicon: str = "iamdb_1kwp_lex_1000.txt", + use_words: bool = False, + prepend_wordsep: bool = False, + special_tokens: Set[str] = {"<s>", "<e>", "<p>"}, + extra_symbols: Set[str] = {"\n",}, + ) -> None: + super().__init__(extra_symbols=extra_symbols) + self.data_dir = ( + ( + Path(__file__).resolve().parents[2] + / "data" + / "downloaded" + / "iam" + / "iamdb" + ) + if data_dir is None + else Path(data_dir) + ) + log.debug(f"Using data dir: {self.data_dir}") + if not self.data_dir.exists(): + raise RuntimeError(f"Could not locate iamdb directory at {self.data_dir}") + + processed_path = ( + Path(__file__).resolve().parents[2] / "data" / "processed" / "iam_lines" + ) + + tokens_path = processed_path / tokens + lexicon_path = processed_path / lexicon + + special_tokens = set(special_tokens) + if self.extra_symbols is not None: + special_tokens = special_tokens | set(extra_symbols) + + self.wordpiece_processor = Preprocessor( + data_dir=self.data_dir, + num_features=num_features, + tokens_path=tokens_path, + lexicon_path=lexicon_path, + use_words=use_words, + prepend_wordsep=prepend_wordsep, + special_tokens=special_tokens, + ) + + def __len__(self) -> int: + return len(self.wordpiece_processor.tokens) + + def get_token(self, index: Union[int, Tensor]) -> str: + if (index := int(index)) <= self.wordpiece_processor.num_tokens: + return self.wordpiece_processor.tokens[index] + raise KeyError(f"Index ({index}) not in mapping.") + + def get_index(self, token: str) -> Tensor: + if token in self.wordpiece_processor.tokens: + return torch.LongTensor([self.wordpiece_processor.tokens_to_index[token]]) + raise KeyError(f"Token ({token}) not found in inverse mapping.") + + def get_text(self, indices: Union[List[int], Tensor]) -> str: + if isinstance(indices, Tensor): + indices = indices.tolist() + return self.wordpiece_processor.to_text(indices).replace(" ", "▁") + + def get_indices(self, text: str) -> Tensor: + return self.wordpiece_processor.to_index(text) + + def emnist_to_wordpiece_indices(self, x: Tensor) -> Tensor: + text = "".join([self.mapping[i] for i in x]) + text = text.lower().replace(" ", "▁") + return torch.LongTensor(self.wordpiece_processor.to_index(text)) + + def __getitem__(self, x: Union[str, int, List[int], Tensor]) -> Union[str, Tensor]: + if isinstance(x, int): + x = [x] + if isinstance(x, str): + return self.get_indices(x) + return self.get_text(x) |