summaryrefslogtreecommitdiff
path: root/text_recognizer/models
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2022-09-13 18:45:36 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2022-09-13 18:45:36 +0200
commit8b2e5296b290f147935c58207fbfd9674394c7b3 (patch)
tree9957280d78bf112f41f4ba339ee1a832cfa2acb9 /text_recognizer/models
parent191aa5a5c080ed7bf7f6d0408aa1cac4295c57d2 (diff)
Remove vq and perceiver models
Diffstat (limited to 'text_recognizer/models')
-rw-r--r--text_recognizer/models/__init__.py2
-rw-r--r--text_recognizer/models/perceiver.py76
-rw-r--r--text_recognizer/models/vq_transformer.py113
3 files changed, 0 insertions, 191 deletions
diff --git a/text_recognizer/models/__init__.py b/text_recognizer/models/__init__.py
index 56e3e93..cc02487 100644
--- a/text_recognizer/models/__init__.py
+++ b/text_recognizer/models/__init__.py
@@ -1,4 +1,2 @@
"""PyTorch Lightning models modules."""
from text_recognizer.models.transformer import LitTransformer
-from text_recognizer.models.perceiver import LitPerceiver
-from text_recognizer.models.vq_transformer import LitVqTransformer
diff --git a/text_recognizer/models/perceiver.py b/text_recognizer/models/perceiver.py
deleted file mode 100644
index c482235..0000000
--- a/text_recognizer/models/perceiver.py
+++ /dev/null
@@ -1,76 +0,0 @@
-"""Lightning model for base Perceiver."""
-from typing import Optional, Tuple, Type
-
-from omegaconf import DictConfig
-import torch
-from torch import nn, Tensor
-
-from text_recognizer.data.mappings import EmnistMapping
-from text_recognizer.models.base import LitBase
-from text_recognizer.models.metrics import CharacterErrorRate
-
-
-class LitPerceiver(LitBase):
- """A PyTorch Lightning model for transformer networks."""
-
- def __init__(
- self,
- network: Type[nn.Module],
- loss_fn: Type[nn.Module],
- optimizer_config: DictConfig,
- lr_scheduler_config: Optional[DictConfig],
- mapping: EmnistMapping,
- max_output_len: int = 682,
- start_token: str = "<s>",
- end_token: str = "<e>",
- pad_token: str = "<p>",
- ) -> None:
- super().__init__(
- network, loss_fn, optimizer_config, lr_scheduler_config, mapping
- )
- self.max_output_len = max_output_len
- self.start_token = start_token
- self.end_token = end_token
- self.pad_token = pad_token
- self.start_index = int(self.mapping.get_index(self.start_token))
- self.end_index = int(self.mapping.get_index(self.end_token))
- self.pad_index = int(self.mapping.get_index(self.pad_token))
- self.ignore_indices = set([self.start_index, self.end_index, self.pad_index])
- self.val_cer = CharacterErrorRate(self.ignore_indices)
- self.test_cer = CharacterErrorRate(self.ignore_indices)
-
- def forward(self, data: Tensor) -> Tensor:
- """Forward pass with the transformer network."""
- return self.predict(data)
-
- def training_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> Tensor:
- """Training step."""
- data, targets = batch
- logits = self.network(data)
- loss = self.loss_fn(logits, targets)
- self.log("train/loss", loss)
- return loss
-
- def validation_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
- """Validation step."""
- data, targets = batch
- preds = self.predict(data)
- self.val_acc(preds, targets)
- self.log("val/acc", self.val_acc, on_step=False, on_epoch=True)
- self.val_cer(preds, targets)
- self.log("val/cer", self.val_cer, on_step=False, on_epoch=True, prog_bar=True)
-
- def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
- """Test step."""
- data, targets = batch
-
- # Compute the text prediction.
- pred = self(data)
- self.test_cer(pred, targets)
- self.log("test/cer", self.test_cer, on_step=False, on_epoch=True, prog_bar=True)
- self.test_acc(pred, targets)
- self.log("test/acc", self.test_acc, on_step=False, on_epoch=True)
-
- @torch.no_grad()
- def predict(self, x: Tensor) -> Tensor:
- return self.network(x).argmax(dim=1)
diff --git a/text_recognizer/models/vq_transformer.py b/text_recognizer/models/vq_transformer.py
deleted file mode 100644
index 99f69c0..0000000
--- a/text_recognizer/models/vq_transformer.py
+++ /dev/null
@@ -1,113 +0,0 @@
-"""Lightning model for Vector Quantized Transformers."""
-from typing import Optional, Tuple, Type
-
-from omegaconf import DictConfig
-import torch
-from torch import nn, Tensor
-
-from text_recognizer.data.mappings import EmnistMapping
-from text_recognizer.models.transformer import LitTransformer
-
-
-class LitVqTransformer(LitTransformer):
- """A PyTorch Lightning model for transformer networks."""
-
- def __init__(
- self,
- network: Type[nn.Module],
- loss_fn: Type[nn.Module],
- optimizer_config: DictConfig,
- lr_scheduler_config: Optional[DictConfig],
- mapping: EmnistMapping,
- max_output_len: int = 682,
- start_token: str = "<s>",
- end_token: str = "<e>",
- pad_token: str = "<p>",
- vq_loss_weight: float = 0.1,
- ) -> None:
- super().__init__(
- network,
- loss_fn,
- optimizer_config,
- lr_scheduler_config,
- mapping,
- max_output_len,
- start_token,
- end_token,
- pad_token,
- )
- self.vq_loss_weight = vq_loss_weight
-
- def training_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> Tensor:
- """Training step."""
- data, targets = batch
- logits, vq_loss = self.network(data, targets[:, :-1])
- loss = self.loss_fn(logits, targets[:, 1:])
- total_loss = loss + self.vq_loss_weight * vq_loss
- self.log("train/vq_loss", vq_loss)
- self.log("train/loss", loss)
- self.log("train/total_loss", total_loss)
- return total_loss
-
- def validation_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
- """Validation step."""
- data, targets = batch
- preds = self.predict(data)
- self.val_acc(preds, targets)
- self.log("val/acc", self.val_acc, on_step=False, on_epoch=True)
- self.val_cer(preds, targets)
- self.log("val/cer", self.val_cer, on_step=False, on_epoch=True, prog_bar=True)
-
- def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
- """Test step."""
- data, targets = batch
- pred = self(data)
- self.test_cer(pred, targets)
- self.log("test/cer", self.test_cer, on_step=False, on_epoch=True, prog_bar=True)
- self.test_acc(pred, targets)
- self.log("test/acc", self.test_acc, on_step=False, on_epoch=True)
-
- @torch.no_grad()
- def predict(self, x: Tensor) -> Tensor:
- """Predicts text in image.
-
- Args:
- x (Tensor): Image(s) to extract text from.
-
- Shapes:
- - x: :math: `(B, H, W)`
- - output: :math: `(B, S)`
-
- Returns:
- Tensor: A tensor of token indices of the predictions from the model.
- """
- bsz = x.shape[0]
-
- # Encode image(s) to latent vectors.
- z, _ = self.network.encode(x)
-
- # Create a placeholder matrix for storing outputs from the network
- output = torch.ones((bsz, self.max_output_len), dtype=torch.long).to(x.device)
- output[:, 0] = self.start_index
-
- for Sy in range(1, self.max_output_len):
- context = output[:, :Sy] # (B, Sy)
- logits = self.network.decode(z, context) # (B, C, Sy)
- tokens = torch.argmax(logits, dim=1) # (B, Sy)
- output[:, Sy : Sy + 1] = tokens[:, -1:]
-
- # Early stopping of prediction loop if token is end or padding token.
- if (
- (output[:, Sy - 1] == self.end_index)
- | (output[:, Sy - 1] == self.pad_index)
- ).all():
- break
-
- # Set all tokens after end token to pad token.
- for Sy in range(1, self.max_output_len):
- idx = (output[:, Sy - 1] == self.end_index) | (
- output[:, Sy - 1] == self.pad_index
- )
- output[idx, Sy] = self.pad_index
-
- return output