summaryrefslogtreecommitdiff
path: root/text_recognizer/models
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2022-06-12 23:16:20 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2022-06-12 23:16:20 +0200
commit8bb76745e43c6b4967c8e91ebaf4c4295d0b8d0b (patch)
tree5ff05d9fea92f7e5bd313d8cdc9559ccbc89a97a /text_recognizer/models
parent8fe4b36bf22281c84c4afee811b3435f3b50686d (diff)
Remove conformer
Diffstat (limited to 'text_recognizer/models')
-rw-r--r--text_recognizer/models/conformer.py124
1 files changed, 0 insertions, 124 deletions
diff --git a/text_recognizer/models/conformer.py b/text_recognizer/models/conformer.py
deleted file mode 100644
index 41a9e4d..0000000
--- a/text_recognizer/models/conformer.py
+++ /dev/null
@@ -1,124 +0,0 @@
-"""Lightning Conformer model."""
-import itertools
-from typing import Optional, Tuple, Type
-
-from omegaconf import DictConfig
-import torch
-from torch import nn, Tensor
-
-from text_recognizer.data.mappings import EmnistMapping
-from text_recognizer.models.base import LitBase
-from text_recognizer.models.metrics import CharacterErrorRate
-from text_recognizer.models.util import first_element
-
-
-class LitConformer(LitBase):
- """A PyTorch Lightning model for transformer networks."""
-
- def __init__(
- self,
- network: Type[nn.Module],
- loss_fn: Type[nn.Module],
- optimizer_configs: DictConfig,
- lr_scheduler_configs: Optional[DictConfig],
- mapping: EmnistMapping,
- max_output_len: int = 451,
- start_token: str = "<s>",
- end_token: str = "<e>",
- pad_token: str = "<p>",
- blank_token: str = "<b>",
- ) -> None:
- super().__init__(
- network, loss_fn, optimizer_configs, lr_scheduler_configs, mapping
- )
- self.max_output_len = max_output_len
- self.start_token = start_token
- self.end_token = end_token
- self.pad_token = pad_token
- self.blank_token = blank_token
- self.start_index = int(self.mapping.get_index(self.start_token))
- self.end_index = int(self.mapping.get_index(self.end_token))
- self.pad_index = int(self.mapping.get_index(self.pad_token))
- self.blank_index = int(self.mapping.get_index(self.blank_token))
- self.ignore_indices = set(
- [self.start_index, self.end_index, self.pad_index, self.blank_index]
- )
- self.val_cer = CharacterErrorRate(self.ignore_indices)
- self.test_cer = CharacterErrorRate(self.ignore_indices)
-
- @torch.no_grad()
- def predict(self, x: Tensor) -> str:
- """Predicts a sequence of characters."""
- logits = self(x)
- logprobs = torch.log_softmax(logits, dim=1)
- return self.decode(logprobs, self.max_output_len)
-
- def training_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> Tensor:
- """Training step."""
- data, targets = batch
- logits = self(data)
- logprobs = torch.log_softmax(logits, dim=1)
- B, S, _ = logprobs.shape
- input_length = torch.ones(B).type_as(logprobs).int() * S
- target_length = first_element(targets, self.pad_index).type_as(targets)
- loss = self.loss_fn(
- logprobs.permute(1, 0, 2), targets, input_length, target_length
- )
- self.log("train/loss", loss)
- return loss
-
- def validation_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
- """Validation step."""
- data, targets = batch
- logits = self(data)
- logprobs = torch.log_softmax(logits, dim=1)
- B, S, _ = logprobs.shape
- input_length = torch.ones(B).type_as(logprobs).int() * S
- target_length = first_element(targets, self.pad_index).type_as(targets)
- loss = self.loss_fn(
- logprobs.permute(1, 0, 2), targets, input_length, target_length
- )
- self.log("val/loss", loss)
- preds = self.decode(logprobs, targets.shape[1])
- self.val_acc(preds, targets)
- self.log("val/acc", self.val_acc, on_step=False, on_epoch=True)
- self.val_cer(preds, targets)
- self.log("val/cer", self.val_cer, on_step=False, on_epoch=True, prog_bar=True)
-
- def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
- """Test step."""
- data, targets = batch
- logits = self(data)
- logprobs = torch.log_softmax(logits, dim=1)
- preds = self.decode(logprobs, targets.shape[1])
- self.val_acc(preds, targets)
- self.log("val/acc", self.val_acc, on_step=False, on_epoch=True)
- self.val_cer(preds, targets)
- self.log("val/cer", self.val_cer, on_step=False, on_epoch=True, prog_bar=True)
-
- def decode(self, logprobs: Tensor, max_length: int) -> Tensor:
- """Greedly decodes a log prob sequence.
-
- Args:
- logprobs (Tensor): Log probabilities.
- max_length (int): Max length of a sequence.
-
- Shapes:
- - x: :math: `(B, T, C)`
- - output: :math: `(B, T)`
-
- Returns:
- Tensor: A predicted sequence of characters.
- """
- B = logprobs.shape[0]
- argmax = logprobs.argmax(2)
- decoded = torch.ones((B, max_length)).type_as(logprobs).int() * self.pad_index
- for i in range(B):
- seq = [
- b
- for b, _ in itertools.groupby(argmax[i].tolist())
- if b != self.blank_index
- ][:max_length]
- for j, c in enumerate(seq):
- decoded[i, j] = c
- return decoded