summaryrefslogtreecommitdiff
path: root/text_recognizer/network/convnext/attention.py
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2023-09-03 01:10:11 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2023-09-03 01:10:11 +0200
commit7239bce214607c70a7a91358586f265b2f74de7b (patch)
tree91b7a42b660d3b3fefb710f38f7a866ef602692d /text_recognizer/network/convnext/attention.py
parenteb9696ff03f4446693399b9eb9e0cabbfb0f4cbf (diff)
Delete convnext
Diffstat (limited to 'text_recognizer/network/convnext/attention.py')
-rw-r--r--text_recognizer/network/convnext/attention.py79
1 files changed, 0 insertions, 79 deletions
diff --git a/text_recognizer/network/convnext/attention.py b/text_recognizer/network/convnext/attention.py
deleted file mode 100644
index 6bc9692..0000000
--- a/text_recognizer/network/convnext/attention.py
+++ /dev/null
@@ -1,79 +0,0 @@
-"""Convolution self attention block."""
-
-import torch.nn.functional as F
-from einops import rearrange
-from torch import Tensor, einsum, nn
-
-from text_recognizer.network.convnext.norm import LayerNorm
-from text_recognizer.network.convnext.residual import Residual
-
-
-def l2norm(t: Tensor) -> Tensor:
- return F.normalize(t, dim=-1)
-
-
-class FeedForward(nn.Module):
- def __init__(self, dim: int, mult: int = 4) -> None:
- super().__init__()
- inner_dim = int(dim * mult)
- self.fn = Residual(
- nn.Sequential(
- LayerNorm(dim),
- nn.Conv2d(dim, inner_dim, 1, bias=False),
- nn.GELU(),
- LayerNorm(inner_dim),
- nn.Conv2d(inner_dim, dim, 1, bias=False),
- )
- )
-
- def forward(self, x: Tensor) -> Tensor:
- return self.fn(x)
-
-
-class Attention(nn.Module):
- def __init__(
- self, dim: int, heads: int = 4, dim_head: int = 64, scale: int = 8
- ) -> None:
- super().__init__()
- self.scale = scale
- self.heads = heads
- inner_dim = heads * dim_head
- self.norm = LayerNorm(dim)
-
- self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias=False)
- self.to_out = nn.Conv2d(inner_dim, dim, 1, bias=False)
-
- def forward(self, x: Tensor) -> Tensor:
- h, w = x.shape[-2:]
-
- residual = x.clone()
-
- x = self.norm(x)
-
- q, k, v = self.to_qkv(x).chunk(3, dim=1)
- q, k, v = map(
- lambda t: rearrange(t, "b (h c) ... -> b h (...) c", h=self.heads),
- (q, k, v),
- )
-
- q, k = map(l2norm, (q, k))
-
- sim = einsum("b h i d, b h j d -> b h i j", q, k) * self.scale
- attn = sim.softmax(dim=-1)
-
- out = einsum("b h i j, b h j d -> b h i d", attn, v)
-
- out = rearrange(out, "b h (x y) d -> b (h d) x y", x=h, y=w)
- return self.to_out(out) + residual
-
-
-class TransformerBlock(nn.Module):
- def __init__(self, attn: Attention, ff: FeedForward) -> None:
- super().__init__()
- self.attn = attn
- self.ff = ff
-
- def forward(self, x: Tensor) -> Tensor:
- x = self.attn(x)
- x = self.ff(x)
- return x