diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2022-06-09 22:33:34 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2022-06-09 22:33:34 +0200 |
commit | 9353a39a18d0542afc177cd134f33f0756820a7d (patch) | |
tree | 2ffbdc31fa9507b11e871cc22e865613ebde74e3 /text_recognizer/networks/base.py | |
parent | 0738c29d88e78f8f464d5421e1f5f844ea54c2e7 (diff) |
Remove abstract lightning module
Diffstat (limited to 'text_recognizer/networks/base.py')
-rw-r--r-- | text_recognizer/networks/base.py | 102 |
1 files changed, 0 insertions, 102 deletions
diff --git a/text_recognizer/networks/base.py b/text_recognizer/networks/base.py deleted file mode 100644 index 29c3bbc..0000000 --- a/text_recognizer/networks/base.py +++ /dev/null @@ -1,102 +0,0 @@ -"""Base network module.""" -import math -from typing import Optional, Tuple, Type - -from loguru import logger as log -from torch import nn, Tensor - -from text_recognizer.networks.transformer.decoder import Decoder - - -class BaseTransformer(nn.Module): - """Base transformer network.""" - - def __init__( - self, - input_dims: Tuple[int, int, int], - hidden_dim: int, - num_classes: int, - pad_index: Tensor, - encoder: Type[nn.Module], - decoder: Decoder, - token_pos_embedding: Optional[Type[nn.Module]] = None, - ) -> None: - super().__init__() - self.input_dims = input_dims - self.hidden_dim = hidden_dim - self.num_classes = num_classes - self.pad_index = pad_index - self.encoder = encoder - self.decoder = decoder - - # Token embedding. - self.token_embedding = nn.Embedding( - num_embeddings=self.num_classes, embedding_dim=self.hidden_dim - ) - - # Positional encoding for decoder tokens. - if not self.decoder.has_pos_emb: - self.token_pos_embedding = token_pos_embedding - else: - self.token_pos_embedding = None - log.debug("Decoder already have a positional embedding.") - - # Output layer - self.to_logits = nn.Linear( - in_features=self.hidden_dim, out_features=self.num_classes - ) - - def encode(self, x: Tensor) -> Tensor: - """Encodes images with encoder.""" - return self.encoder(x) - - def decode(self, src: Tensor, trg: Tensor) -> Tensor: - """Decodes latent images embedding into word pieces. - - Args: - src (Tensor): Latent images embedding. - trg (Tensor): Word embeddings. - - Shapes: - - z: :math: `(B, Sx, E)` - - context: :math: `(B, Sy)` - - out: :math: `(B, Sy, T)` - - where Sy is the length of the output and T is the number of tokens. - - Returns: - Tensor: Sequence of word piece embeddings. - """ - trg = trg.long() - trg_mask = trg != self.pad_index - trg = self.token_embedding(trg) * math.sqrt(self.hidden_dim) - trg = ( - self.token_pos_embedding(trg) - if self.token_pos_embedding is not None - else trg - ) - out = self.decoder(x=trg, context=src, input_mask=trg_mask) - logits = self.to_logits(out) # [B, Sy, T] - logits = logits.permute(0, 2, 1) # [B, T, Sy] - return logits - - def forward(self, x: Tensor, context: Tensor) -> Tensor: - """Encodes images into word piece logtis. - - Args: - x (Tensor): Input image(s). - context (Tensor): Target word embeddings. - - Shapes: - - x: :math: `(B, C, H, W)` - - context: :math: `(B, Sy, T)` - - where B is the batch size, C is the number of input channels, H is - the image height and W is the image width. - - Returns: - Tensor: Sequence of logits. - """ - z = self.encode(x) - logits = self.decode(z, context) - return logits |