summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/base.py
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2022-06-09 22:33:34 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2022-06-09 22:33:34 +0200
commit9353a39a18d0542afc177cd134f33f0756820a7d (patch)
tree2ffbdc31fa9507b11e871cc22e865613ebde74e3 /text_recognizer/networks/base.py
parent0738c29d88e78f8f464d5421e1f5f844ea54c2e7 (diff)
Remove abstract lightning module
Diffstat (limited to 'text_recognizer/networks/base.py')
-rw-r--r--text_recognizer/networks/base.py102
1 files changed, 0 insertions, 102 deletions
diff --git a/text_recognizer/networks/base.py b/text_recognizer/networks/base.py
deleted file mode 100644
index 29c3bbc..0000000
--- a/text_recognizer/networks/base.py
+++ /dev/null
@@ -1,102 +0,0 @@
-"""Base network module."""
-import math
-from typing import Optional, Tuple, Type
-
-from loguru import logger as log
-from torch import nn, Tensor
-
-from text_recognizer.networks.transformer.decoder import Decoder
-
-
-class BaseTransformer(nn.Module):
- """Base transformer network."""
-
- def __init__(
- self,
- input_dims: Tuple[int, int, int],
- hidden_dim: int,
- num_classes: int,
- pad_index: Tensor,
- encoder: Type[nn.Module],
- decoder: Decoder,
- token_pos_embedding: Optional[Type[nn.Module]] = None,
- ) -> None:
- super().__init__()
- self.input_dims = input_dims
- self.hidden_dim = hidden_dim
- self.num_classes = num_classes
- self.pad_index = pad_index
- self.encoder = encoder
- self.decoder = decoder
-
- # Token embedding.
- self.token_embedding = nn.Embedding(
- num_embeddings=self.num_classes, embedding_dim=self.hidden_dim
- )
-
- # Positional encoding for decoder tokens.
- if not self.decoder.has_pos_emb:
- self.token_pos_embedding = token_pos_embedding
- else:
- self.token_pos_embedding = None
- log.debug("Decoder already have a positional embedding.")
-
- # Output layer
- self.to_logits = nn.Linear(
- in_features=self.hidden_dim, out_features=self.num_classes
- )
-
- def encode(self, x: Tensor) -> Tensor:
- """Encodes images with encoder."""
- return self.encoder(x)
-
- def decode(self, src: Tensor, trg: Tensor) -> Tensor:
- """Decodes latent images embedding into word pieces.
-
- Args:
- src (Tensor): Latent images embedding.
- trg (Tensor): Word embeddings.
-
- Shapes:
- - z: :math: `(B, Sx, E)`
- - context: :math: `(B, Sy)`
- - out: :math: `(B, Sy, T)`
-
- where Sy is the length of the output and T is the number of tokens.
-
- Returns:
- Tensor: Sequence of word piece embeddings.
- """
- trg = trg.long()
- trg_mask = trg != self.pad_index
- trg = self.token_embedding(trg) * math.sqrt(self.hidden_dim)
- trg = (
- self.token_pos_embedding(trg)
- if self.token_pos_embedding is not None
- else trg
- )
- out = self.decoder(x=trg, context=src, input_mask=trg_mask)
- logits = self.to_logits(out) # [B, Sy, T]
- logits = logits.permute(0, 2, 1) # [B, T, Sy]
- return logits
-
- def forward(self, x: Tensor, context: Tensor) -> Tensor:
- """Encodes images into word piece logtis.
-
- Args:
- x (Tensor): Input image(s).
- context (Tensor): Target word embeddings.
-
- Shapes:
- - x: :math: `(B, C, H, W)`
- - context: :math: `(B, Sy, T)`
-
- where B is the batch size, C is the number of input channels, H is
- the image height and W is the image width.
-
- Returns:
- Tensor: Sequence of logits.
- """
- z = self.encode(x)
- logits = self.decode(z, context)
- return logits