diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-03-20 18:09:06 +0100 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-03-20 18:09:06 +0100 |
commit | 7e8e54e84c63171e748bbf09516fd517e6821ace (patch) | |
tree | 996093f75a5d488dddf7ea1f159ed343a561ef89 /text_recognizer/networks/cnn_transformer.py | |
parent | b0719d84138b6bbe5f04a4982dfca673aea1a368 (diff) |
Inital commit for refactoring to lightning
Diffstat (limited to 'text_recognizer/networks/cnn_transformer.py')
-rw-r--r-- | text_recognizer/networks/cnn_transformer.py | 158 |
1 files changed, 158 insertions, 0 deletions
diff --git a/text_recognizer/networks/cnn_transformer.py b/text_recognizer/networks/cnn_transformer.py new file mode 100644 index 0000000..9150b55 --- /dev/null +++ b/text_recognizer/networks/cnn_transformer.py @@ -0,0 +1,158 @@ +"""A CNN-Transformer for image to text recognition.""" +from typing import Dict, Optional, Tuple + +from einops import rearrange +import torch +from torch import nn +from torch import Tensor + +from text_recognizer.networks.transformer import PositionalEncoding, Transformer +from text_recognizer.networks.util import activation_function +from text_recognizer.networks.util import configure_backbone + + +class CNNTransformer(nn.Module): + """CNN+Transfomer for image to sequence prediction.""" + + def __init__( + self, + num_encoder_layers: int, + num_decoder_layers: int, + hidden_dim: int, + vocab_size: int, + num_heads: int, + adaptive_pool_dim: Tuple, + expansion_dim: int, + dropout_rate: float, + trg_pad_index: int, + max_len: int, + backbone: str, + backbone_args: Optional[Dict] = None, + activation: str = "gelu", + pool_kernel: Optional[Tuple[int, int]] = None, + ) -> None: + super().__init__() + self.trg_pad_index = trg_pad_index + self.vocab_size = vocab_size + self.backbone = configure_backbone(backbone, backbone_args) + + if pool_kernel is not None: + self.max_pool = nn.MaxPool2d(pool_kernel, stride=2) + else: + self.max_pool = None + + self.character_embedding = nn.Embedding(self.vocab_size, hidden_dim) + + self.src_position_embedding = nn.Parameter(torch.randn(1, max_len, hidden_dim)) + self.pos_dropout = nn.Dropout(p=dropout_rate) + self.trg_position_encoding = PositionalEncoding(hidden_dim, dropout_rate) + + nn.init.normal_(self.character_embedding.weight, std=0.02) + + self.adaptive_pool = ( + nn.AdaptiveAvgPool2d((adaptive_pool_dim)) if adaptive_pool_dim else None + ) + + self.transformer = Transformer( + num_encoder_layers, + num_decoder_layers, + hidden_dim, + num_heads, + expansion_dim, + dropout_rate, + activation, + ) + + self.head = nn.Sequential( + # nn.Linear(hidden_dim, hidden_dim * 2), + # activation_function(activation), + nn.Linear(hidden_dim, vocab_size), + ) + + def _create_trg_mask(self, trg: Tensor) -> Tensor: + # Move this outside the transformer. + trg_pad_mask = (trg != self.trg_pad_index)[:, None, None] + trg_len = trg.shape[1] + trg_sub_mask = torch.tril( + torch.ones((trg_len, trg_len), device=trg.device) + ).bool() + trg_mask = trg_pad_mask & trg_sub_mask + return trg_mask + + def encoder(self, src: Tensor) -> Tensor: + """Forward pass with the encoder of the transformer.""" + return self.transformer.encoder(src) + + def decoder(self, trg: Tensor, memory: Tensor, trg_mask: Tensor) -> Tensor: + """Forward pass with the decoder of the transformer + classification head.""" + return self.head( + self.transformer.decoder(trg=trg, memory=memory, trg_mask=trg_mask) + ) + + def extract_image_features(self, src: Tensor) -> Tensor: + """Extracts image features with a backbone neural network. + + It seem like the winning idea was to swap channels and width dimension and collapse + the height dimension. The transformer is learning like a baby with this implementation!!! :D + Ohhhh, the joy I am experiencing right now!! Bring in the beers! :D :D :D + + Args: + src (Tensor): Input tensor. + + Returns: + Tensor: A input src to the transformer. + + """ + # If batch dimension is missing, it needs to be added. + if len(src.shape) < 4: + src = src[(None,) * (4 - len(src.shape))] + + src = self.backbone(src) + + if self.max_pool is not None: + src = self.max_pool(src) + + if self.adaptive_pool is not None and len(src.shape) == 4: + src = rearrange(src, "b c h w -> b w c h") + src = self.adaptive_pool(src) + src = src.squeeze(3) + elif len(src.shape) == 4: + src = rearrange(src, "b c h w -> b (h w) c") + + b, t, _ = src.shape + + src += self.src_position_embedding[:, :t] + src = self.pos_dropout(src) + + return src + + def target_embedding(self, trg: Tensor) -> Tuple[Tensor, Tensor]: + """Encodes target tensor with embedding and postion. + + Args: + trg (Tensor): Target tensor. + + Returns: + Tuple[Tensor, Tensor]: Encoded target tensor and target mask. + + """ + trg = self.character_embedding(trg.long()) + trg = self.trg_position_encoding(trg) + return trg + + def decode_image_features( + self, image_features: Tensor, trg: Optional[Tensor] = None + ) -> Tensor: + """Takes images features from the backbone and decodes them with the transformer.""" + trg_mask = self._create_trg_mask(trg) + trg = self.target_embedding(trg) + out = self.transformer(image_features, trg, trg_mask=trg_mask) + + logits = self.head(out) + return logits + + def forward(self, x: Tensor, trg: Optional[Tensor] = None) -> Tensor: + """Forward pass with CNN transfomer.""" + image_features = self.extract_image_features(x) + logits = self.decode_image_features(image_features, trg) + return logits |