summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/conformer/attention.py
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2022-06-12 23:16:20 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2022-06-12 23:16:20 +0200
commit8bb76745e43c6b4967c8e91ebaf4c4295d0b8d0b (patch)
tree5ff05d9fea92f7e5bd313d8cdc9559ccbc89a97a /text_recognizer/networks/conformer/attention.py
parent8fe4b36bf22281c84c4afee811b3435f3b50686d (diff)
Remove conformer
Diffstat (limited to 'text_recognizer/networks/conformer/attention.py')
-rw-r--r--text_recognizer/networks/conformer/attention.py49
1 files changed, 0 insertions, 49 deletions
diff --git a/text_recognizer/networks/conformer/attention.py b/text_recognizer/networks/conformer/attention.py
deleted file mode 100644
index e56e572..0000000
--- a/text_recognizer/networks/conformer/attention.py
+++ /dev/null
@@ -1,49 +0,0 @@
-"""Efficient self attention."""
-from einops import rearrange
-import torch
-import torch.nn.functional as F
-from torch import einsum, nn, Tensor
-
-
-class LayerNorm(nn.Module):
- def __init__(self, dim: int) -> None:
- super().__init__()
- self.gamma = nn.Parameter(torch.ones(dim))
- self.register_buffer("beta", torch.zeros(dim))
-
- def forward(self, x: Tensor) -> Tensor:
- return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta)
-
-
-class SwiGLU(nn.Module):
- def forward(self, x: Tensor) -> Tensor:
- x, gate = x.chunk(2, dim=-1)
- return F.silu(gate) * x
-
-
-class Attention(nn.Module):
- def __init__(
- self, dim: int, dim_head: int = 64, heads: int = 8, mult: int = 4
- ) -> None:
- super().__init__()
- self.norm = LayerNorm(dim)
- attn_inner_dim = heads * dim_head
- ff_inner_dim = mult * dim
- self.heads = heads
- self.scale = dim_head ** -0.5
- self.fused_dims = (attn_inner_dim, dim_head, dim_head, (2 * ff_inner_dim))
- self.fused_attn_ff_proj = nn.Linear(dim, sum(self.fused_dims), bias=False)
- self.attn_out = nn.Linear(attn_inner_dim, dim, bias=False)
- self.ff_out = nn.Sequential(SwiGLU(), nn.Linear(ff_inner_dim, dim, bias=False))
-
- def forward(self, x: Tensor) -> Tensor:
- h = self.heads
- x = self.norm(x)
- q, k, v, ff = self.fused_attn_ff_proj(x).split(self.fused_dims, dim=-1)
- q = rearrange(q, "b n (h d) -> b h n d", h=h)
- q = q * self.scale
- sim = einsum("b h i d, b j d -> b h i j", q, k)
- attn = sim.softmax(dim=-1)
- out = einsum("b h i j, b j d -> b h i d", attn, v)
- out = rearrange(out, "b h n d -> b n (h d)")
- return self.attn_out(out) + self.ff_out(ff)