diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2022-06-09 22:33:34 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2022-06-09 22:33:34 +0200 |
commit | 9353a39a18d0542afc177cd134f33f0756820a7d (patch) | |
tree | 2ffbdc31fa9507b11e871cc22e865613ebde74e3 /text_recognizer/networks/conv_transformer.py | |
parent | 0738c29d88e78f8f464d5421e1f5f844ea54c2e7 (diff) |
Remove abstract lightning module
Diffstat (limited to 'text_recognizer/networks/conv_transformer.py')
-rw-r--r-- | text_recognizer/networks/conv_transformer.py | 99 |
1 files changed, 81 insertions, 18 deletions
diff --git a/text_recognizer/networks/conv_transformer.py b/text_recognizer/networks/conv_transformer.py index e374bd8..d66643b 100644 --- a/text_recognizer/networks/conv_transformer.py +++ b/text_recognizer/networks/conv_transformer.py @@ -1,17 +1,17 @@ -"""Vision transformer for character recognition.""" +"""Base network module.""" from typing import Optional, Tuple, Type +from loguru import logger as log from torch import nn, Tensor -from text_recognizer.networks.base import BaseTransformer from text_recognizer.networks.transformer.decoder import Decoder from text_recognizer.networks.transformer.embeddings.axial import ( AxialPositionalEmbedding, ) -class ConvTransformer(BaseTransformer): - """Convolutional encoder and transformer decoder network.""" +class ConvTransformer(nn.Module): + """Base transformer network.""" def __init__( self, @@ -21,20 +21,30 @@ class ConvTransformer(BaseTransformer): pad_index: Tensor, encoder: Type[nn.Module], decoder: Decoder, - pixel_pos_embedding: AxialPositionalEmbedding, + pixel_embedding: AxialPositionalEmbedding, token_pos_embedding: Optional[Type[nn.Module]] = None, ) -> None: - super().__init__( - input_dims, - hidden_dim, - num_classes, - pad_index, - encoder, - decoder, - token_pos_embedding, + super().__init__() + self.input_dims = input_dims + self.hidden_dim = hidden_dim + self.num_classes = num_classes + self.pad_index = pad_index + self.encoder = encoder + self.decoder = decoder + + # Token embedding. + self.token_embedding = nn.Embedding( + num_embeddings=self.num_classes, embedding_dim=self.hidden_dim ) - self.pixel_pos_embedding = pixel_pos_embedding + # Positional encoding for decoder tokens. + if not self.decoder.has_pos_emb: + self.token_pos_embedding = token_pos_embedding + else: + self.token_pos_embedding = None + log.debug("Decoder already have a positional embedding.") + + self.pixel_embedding = pixel_embedding # Latent projector for down sampling number of filters and 2d # positional encoding. @@ -44,15 +54,17 @@ class ConvTransformer(BaseTransformer): kernel_size=1, ) + # Output layer + self.to_logits = nn.Linear( + in_features=self.hidden_dim, out_features=self.num_classes + ) + # Initalize weights for encoder. self.init_weights() def init_weights(self) -> None: """Initalize weights for decoder network and to_logits.""" - bound = 0.1 - self.token_embedding.weight.data.uniform_(-bound, bound) - self.to_logits.bias.data.zero_() - self.to_logits.weight.data.uniform_(-bound, bound) + nn.init.kaiming_normal_(self.token_emb.emb.weight) def encode(self, x: Tensor) -> Tensor: """Encodes an image into a latent feature vector. @@ -79,3 +91,54 @@ class ConvTransformer(BaseTransformer): # Permute tensor from [B, E, Ho * Wo] to [B, Sx, E] z = z.permute(0, 2, 1) return z + + def decode(self, src: Tensor, trg: Tensor) -> Tensor: + """Decodes latent images embedding into word pieces. + + Args: + src (Tensor): Latent images embedding. + trg (Tensor): Word embeddings. + + Shapes: + - z: :math: `(B, Sx, D)` + - context: :math: `(B, Sy)` + - out: :math: `(B, Sy, C)` + + where Sy is the length of the output and C is the number of classes. + + Returns: + Tensor: Sequence of word piece embeddings. + """ + trg = trg.long() + trg_mask = trg != self.pad_index + trg = self.token_embedding(trg) + trg = ( + self.token_pos_embedding(trg) + if self.token_pos_embedding is not None + else trg + ) + out = self.decoder(x=trg, context=src, input_mask=trg_mask) + logits = self.to_logits(out) # [B, Sy, C] + logits = logits.permute(0, 2, 1) # [B, C, Sy] + return logits + + def forward(self, x: Tensor, context: Tensor) -> Tensor: + """Encodes images into word piece logtis. + + Args: + x (Tensor): Input image(s). + context (Tensor): Target word embeddings. + + Shapes: + - x: :math: `(B, D, H, W)` + - context: :math: `(B, Sy, C)` + + where B is the batch size, D is the number of input channels, H is + the image height, W is the image width, and C is the number of classes. + + Returns: + Tensor: Sequence of logits. + """ + z = self.encode(x) + logits = self.decode(z, context) + return logits |