summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/conv_transformer.py
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2022-06-09 22:33:34 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2022-06-09 22:33:34 +0200
commit9353a39a18d0542afc177cd134f33f0756820a7d (patch)
tree2ffbdc31fa9507b11e871cc22e865613ebde74e3 /text_recognizer/networks/conv_transformer.py
parent0738c29d88e78f8f464d5421e1f5f844ea54c2e7 (diff)
Remove abstract lightning module
Diffstat (limited to 'text_recognizer/networks/conv_transformer.py')
-rw-r--r--text_recognizer/networks/conv_transformer.py99
1 files changed, 81 insertions, 18 deletions
diff --git a/text_recognizer/networks/conv_transformer.py b/text_recognizer/networks/conv_transformer.py
index e374bd8..d66643b 100644
--- a/text_recognizer/networks/conv_transformer.py
+++ b/text_recognizer/networks/conv_transformer.py
@@ -1,17 +1,17 @@
-"""Vision transformer for character recognition."""
+"""Base network module."""
from typing import Optional, Tuple, Type
+from loguru import logger as log
from torch import nn, Tensor
-from text_recognizer.networks.base import BaseTransformer
from text_recognizer.networks.transformer.decoder import Decoder
from text_recognizer.networks.transformer.embeddings.axial import (
AxialPositionalEmbedding,
)
-class ConvTransformer(BaseTransformer):
- """Convolutional encoder and transformer decoder network."""
+class ConvTransformer(nn.Module):
+ """Base transformer network."""
def __init__(
self,
@@ -21,20 +21,30 @@ class ConvTransformer(BaseTransformer):
pad_index: Tensor,
encoder: Type[nn.Module],
decoder: Decoder,
- pixel_pos_embedding: AxialPositionalEmbedding,
+ pixel_embedding: AxialPositionalEmbedding,
token_pos_embedding: Optional[Type[nn.Module]] = None,
) -> None:
- super().__init__(
- input_dims,
- hidden_dim,
- num_classes,
- pad_index,
- encoder,
- decoder,
- token_pos_embedding,
+ super().__init__()
+ self.input_dims = input_dims
+ self.hidden_dim = hidden_dim
+ self.num_classes = num_classes
+ self.pad_index = pad_index
+ self.encoder = encoder
+ self.decoder = decoder
+
+ # Token embedding.
+ self.token_embedding = nn.Embedding(
+ num_embeddings=self.num_classes, embedding_dim=self.hidden_dim
)
- self.pixel_pos_embedding = pixel_pos_embedding
+ # Positional encoding for decoder tokens.
+ if not self.decoder.has_pos_emb:
+ self.token_pos_embedding = token_pos_embedding
+ else:
+ self.token_pos_embedding = None
+ log.debug("Decoder already have a positional embedding.")
+
+ self.pixel_embedding = pixel_embedding
# Latent projector for down sampling number of filters and 2d
# positional encoding.
@@ -44,15 +54,17 @@ class ConvTransformer(BaseTransformer):
kernel_size=1,
)
+ # Output layer
+ self.to_logits = nn.Linear(
+ in_features=self.hidden_dim, out_features=self.num_classes
+ )
+
# Initalize weights for encoder.
self.init_weights()
def init_weights(self) -> None:
"""Initalize weights for decoder network and to_logits."""
- bound = 0.1
- self.token_embedding.weight.data.uniform_(-bound, bound)
- self.to_logits.bias.data.zero_()
- self.to_logits.weight.data.uniform_(-bound, bound)
+ nn.init.kaiming_normal_(self.token_emb.emb.weight)
def encode(self, x: Tensor) -> Tensor:
"""Encodes an image into a latent feature vector.
@@ -79,3 +91,54 @@ class ConvTransformer(BaseTransformer):
# Permute tensor from [B, E, Ho * Wo] to [B, Sx, E]
z = z.permute(0, 2, 1)
return z
+
+ def decode(self, src: Tensor, trg: Tensor) -> Tensor:
+ """Decodes latent images embedding into word pieces.
+
+ Args:
+ src (Tensor): Latent images embedding.
+ trg (Tensor): Word embeddings.
+
+ Shapes:
+ - z: :math: `(B, Sx, D)`
+ - context: :math: `(B, Sy)`
+ - out: :math: `(B, Sy, C)`
+
+ where Sy is the length of the output and C is the number of classes.
+
+ Returns:
+ Tensor: Sequence of word piece embeddings.
+ """
+ trg = trg.long()
+ trg_mask = trg != self.pad_index
+ trg = self.token_embedding(trg)
+ trg = (
+ self.token_pos_embedding(trg)
+ if self.token_pos_embedding is not None
+ else trg
+ )
+ out = self.decoder(x=trg, context=src, input_mask=trg_mask)
+ logits = self.to_logits(out) # [B, Sy, C]
+ logits = logits.permute(0, 2, 1) # [B, C, Sy]
+ return logits
+
+ def forward(self, x: Tensor, context: Tensor) -> Tensor:
+ """Encodes images into word piece logtis.
+
+ Args:
+ x (Tensor): Input image(s).
+ context (Tensor): Target word embeddings.
+
+ Shapes:
+ - x: :math: `(B, D, H, W)`
+ - context: :math: `(B, Sy, C)`
+
+ where B is the batch size, D is the number of input channels, H is
+ the image height, W is the image width, and C is the number of classes.
+
+ Returns:
+ Tensor: Sequence of logits.
+ """
+ z = self.encode(x)
+ logits = self.decode(z, context)
+ return logits