diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2022-09-13 21:58:26 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2022-09-13 21:58:26 +0200 |
commit | 4a4d5f2a2ee06069140b0d861018a70c63ad3d46 (patch) | |
tree | f7ad1fb205aaed646452f30f34aeee6b124c26ff /text_recognizer/networks/convnext/attention.py | |
parent | 74c78b47f10bd773c923ba3a51d99088a2e58864 (diff) |
Add convnext attention
Diffstat (limited to 'text_recognizer/networks/convnext/attention.py')
-rw-r--r-- | text_recognizer/networks/convnext/attention.py | 79 |
1 files changed, 79 insertions, 0 deletions
diff --git a/text_recognizer/networks/convnext/attention.py b/text_recognizer/networks/convnext/attention.py index e69de29..7f03436 100644 --- a/text_recognizer/networks/convnext/attention.py +++ b/text_recognizer/networks/convnext/attention.py @@ -0,0 +1,79 @@ +"""Convolution self attention block.""" + +from einops import reduce, rearrange +from torch import einsum, nn, Tensor +import torch.nn.functional as F + +from text_recognizer.networks.convnext.norm import LayerNorm +from text_recognizer.networks.convnext.residual import Residual + + +def l2norm(t: Tensor) -> Tensor: + return F.normalize(t, dim=-1) + + +class FeedForward(nn.Module): + def __init__(self, dim: int, mult: int = 4) -> None: + super().__init__() + inner_dim = int(dim * mult) + self.fn = Residual( + nn.Sequential( + LayerNorm(dim), + nn.Conv2d(dim, inner_dim, 1, bias=False), + nn.GELU(), + LayerNorm(inner_dim), + nn.Conv2d(inner_dim, dim, 1, bias=False), + ) + ) + + def forward(self, x: Tensor) -> Tensor: + return self.fn(x) + + +class Attention(nn.Module): + def __init__( + self, dim: int, heads: int = 4, dim_head: int = 64, scale: int = 8 + ) -> None: + super().__init__() + self.scale = scale + self.heads = heads + inner_dim = heads * dim_head + self.norm = LayerNorm(dim) + + self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias=False) + self.to_out = nn.Conv2d(inner_dim, dim, 1, bias=False) + + def forward(self, x: Tensor) -> Tensor: + h, w = x.shape[-2:] + + residual = x.clone() + + x = self.norm(x) + + q, k, v = self.to_qkv(x).chunk(3, dim=1) + q, k, v = map( + lambda t: rearrange(t, "b (h c) ... -> b h (...) c", h=self.heads), + (q, k, v), + ) + + q, k = map(l2norm, (q, k)) + + sim = einsum("b h i d, b h j d -> b h i j", q, k) * self.scale + attn = sim.softmax(dim=-1) + + out = einsum("b h i j, b h j d -> b h i d", attn, v) + + out = rearrange(out, "b h (x y) d -> b (h d) x y", x=h, y=w) + return self.to_out(out) + residual + + +class TransformerBlock(nn.Module): + def __init__(self, attn: Attention, ff: FeedForward) -> None: + super().__init__() + self.attn = attn + self.ff = ff + + def forward(self, x: Tensor) -> Tensor: + x = self.attn(x) + x = self.ff(x) + return x |