summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/encoders/efficientnet/utils.py
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2021-11-22 22:38:43 +0100
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2021-11-22 22:38:43 +0100
commit050e1bd284a173d2586ad4607e95d114691db563 (patch)
treef428b5a17396a7cd585e89d84765e3d7ed233618 /text_recognizer/networks/encoders/efficientnet/utils.py
parent36875ceca1e00f5bb39a151c50ecf5e333b4cf79 (diff)
Move efficientnet from encoder dir
Diffstat (limited to 'text_recognizer/networks/encoders/efficientnet/utils.py')
-rw-r--r--text_recognizer/networks/encoders/efficientnet/utils.py85
1 files changed, 0 insertions, 85 deletions
diff --git a/text_recognizer/networks/encoders/efficientnet/utils.py b/text_recognizer/networks/encoders/efficientnet/utils.py
deleted file mode 100644
index 2b1aebb..0000000
--- a/text_recognizer/networks/encoders/efficientnet/utils.py
+++ /dev/null
@@ -1,85 +0,0 @@
-"""Util functions for efficient net."""
-import math
-from typing import List, Tuple
-
-from omegaconf import DictConfig, OmegaConf
-import torch
-from torch import Tensor
-
-
-def stochastic_depth(x: Tensor, p: float, training: bool) -> Tensor:
- """Stochastic connection.
-
- Drops the entire convolution with a given survival probability.
-
- Args:
- x (Tensor): Input tensor.
- p (float): Survival probability between 0.0 and 1.0.
- training (bool): The running mode.
-
- Shapes:
- - x: :math: `(B, C, W, H)`.
- - out: :math: `(B, C, W, H)`.
-
- where B is the batch size, C is the number of channels, W is the width, and H
- is the height.
-
- Returns:
- out (Tensor): Output after drop connection.
- """
- assert 0.0 <= p <= 1.0, "p must be in range of [0, 1]"
-
- if not training:
- return x
-
- bsz = x.shape[0]
- survival_prob = 1 - p
-
- # Generate a binary tensor mask according to probability (p for 0, 1-p for 1)
- random_tensor = survival_prob
- random_tensor += torch.rand([bsz, 1, 1, 1]).type_as(x)
- binary_tensor = torch.floor(random_tensor)
-
- out = x / survival_prob * binary_tensor
- return out
-
-
-def round_filters(filters: int, arch: Tuple[float, float, float]) -> int:
- """Returns the number output filters for a block."""
- multiplier = arch[0]
- divisor = 8
- filters *= multiplier
- new_filters = max(divisor, (filters + divisor // 2) // divisor * divisor)
- if new_filters < 0.9 * filters:
- new_filters += divisor
- return int(new_filters)
-
-
-def round_repeats(repeats: int, arch: Tuple[float, float, float]) -> int:
- """Returns how many times a layer should be repeated in a block."""
- return int(math.ceil(arch[1] * repeats))
-
-
-def block_args() -> List[DictConfig]:
- """Returns arguments for each efficientnet block."""
- keys = [
- "num_repeats",
- "kernel_size",
- "stride",
- "expand_ratio",
- "in_channels",
- "out_channels",
- "se_ratio",
- ]
- args = [
- [1, 3, (1, 1), 1, 32, 16, 0.25],
- [2, 3, (2, 2), 6, 16, 24, 0.25],
- [2, 5, (2, 2), 6, 24, 40, 0.25],
- [3, 3, (2, 2), 6, 40, 80, 0.25],
- [3, 5, (1, 1), 6, 80, 112, 0.25],
- [1, 3, (1, 1), 6, 112, 320, 0.25],
- ]
- block_args_ = []
- for row in args:
- block_args_.append(OmegaConf.create(dict(zip(keys, row))))
- return block_args_