diff options
author | aktersnurra <grydholm@kth.se> | 2021-06-16 20:12:03 +0200 |
---|---|---|
committer | aktersnurra <grydholm@kth.se> | 2021-06-16 20:12:03 +0200 |
commit | 85953dcbf4893653311d9a45b127d74e76af4ad3 (patch) | |
tree | 4ebee002342a6bbc135171dba4ee55de66cef18e /text_recognizer/networks/encoders/efficientnet | |
parent | fd971d09fd6167ac42bd5aeb5e64a719dc1c370b (diff) |
Working on MBconvblock
Diffstat (limited to 'text_recognizer/networks/encoders/efficientnet')
-rw-r--r-- | text_recognizer/networks/encoders/efficientnet/__init__.py | 0 | ||||
-rw-r--r-- | text_recognizer/networks/encoders/efficientnet/mbconv_block.py | 163 |
2 files changed, 163 insertions, 0 deletions
diff --git a/text_recognizer/networks/encoders/efficientnet/__init__.py b/text_recognizer/networks/encoders/efficientnet/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/text_recognizer/networks/encoders/efficientnet/__init__.py diff --git a/text_recognizer/networks/encoders/efficientnet/mbconv_block.py b/text_recognizer/networks/encoders/efficientnet/mbconv_block.py new file mode 100644 index 0000000..0384cd9 --- /dev/null +++ b/text_recognizer/networks/encoders/efficientnet/mbconv_block.py @@ -0,0 +1,163 @@ +"""Mobile inverted residual block.""" +from typing import Tuple + +import torch +from torch import nn, Tensor +from torch.nn import functional as F + +from .utils import get_same_padding_conv2d + + +class MBConvBlock(nn.Module): + """Mobile Inverted Residual Bottleneck block.""" + + def __init__( + self, + in_channels: int, + kernel_size: int, + stride: int, + bn_momentum: float, + bn_eps: float, + se_ratio: float, + id_skip: bool, + expand_ratio: int, + image_size: Tuple[int, int], + ) -> None: + super().__init__() + self.kernel_size = kernel_size + self.bn_momentum = bn_momentum + self.bn_eps = bn_eps + self.id_skip = id_skip + self.has_se = se_ratio is not None and 0.0 < se_ratio < 1.0 + + + def _build(self, image_size: Tuple[int, int], in_channels: int, kernel_size: int, stride: int, expand_ratio: int) -> None: + inner_channels = in_channels * expand_ratio + self._inverted_bottleneck = ( + self._configure_inverted_bottleneck( + image_size=image_size, + in_channels=in_channels, + out_channels=inner_channels, + ) + if expand_ratio != 1 + else None + ) + + self._depthwise = self._configure_depthwise( + image_size=image_size, + in_channels=in_channels, + out_channels=inner_channels, + groups=inner_channels, + kernel_size=kernel_size, + stride=stride, + ) + + image_size = calculate_output_image_size(image_size, stride) + self._squeeze_excite = ( + self._configure_squeeze_excite( + in_channels=inner_channels, out_channels=inner_channels, se_ratio=se_ratio + ) + if self.has_se + else None + ) + + self._pointwise = self._configure_pointwise( + image_size=image_size, in_channels=inner_channels, out_channels=out_channels + ) + + def _configure_inverted_bottleneck( + self, + image_size: Tuple[int, int], + in_channels: int, + out_channels: int, + ) -> nn.Sequential: + """Expansion phase.""" + Conv2d = get_same_padding_conv2d(image_size=image_size) + return nn.Sequential( + Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=1, + bias=False, + ), + nn.BatchNorm2d( + num_features=out_channels, momentum=self.bn_momentum, eps=self.bn_eps + ), + nn.SiLU(inplace=True), + ) + + def _configure_depthwise( + self, + image_size: Tuple[int, int], + in_channels: int, + out_channels: int, + groups: int, + kernel_size: int, + stride: int, + ) -> nn.Sequential: + Conv2d = get_same_padding_conv2d(image_size=image_size) + return nn.Sequential( + Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + stride=stride, + groups=groups, + bias=False, + ), + nn.BatchNorm2d( + num_features=out_channels, momentum=self.bn_momentum, eps=self.bn_eps + ), + nn.SiLU(inplace=True), + ) + + def _configure_squeeze_excite( + self, in_channels: int, out_channels: int, se_ratio: float + ) -> nn.Sequential: + Conv2d = get_same_padding_conv2d(image_size=(1, 1)) + num_squeezed_channels = max(1, int(in_channels * se_ratio)) + return nn.Sequential( + Conv2d( + in_channels=in_channels, + out_channels=num_squeezed_channels, + kernel_size=1, + ), + nn.SiLU(inplace=True), + Conv2d( + in_channels=num_squeezed_channels, + out_channels=out_channels, + kernel_size=1, + ), + ) + + def _configure_pointwise( + self, image_size: Tuple[int, int], in_channels: int, out_channels: int + ) -> nn.Sequential: + Conv2d = get_same_padding_conv2d(image_size=image_size) + return nn.Sequential( + Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=1, + bias=False, + ), + nn.BatchNorm2d( + num_features=out_channels, momentum=self.bn_momentum, eps=self.bn_eps + ), + ) + + def forward(self, x: Tensor, drop_connection_rate: Optional[float]) -> Tensor: + residual = x + if self._inverted_bottleneck is not None: + x = self._inverted_bottleneck(x) + + x = self._depthwise(x) + + if self._squeeze_excite is not None: + x_squeezed = F.adaptive_avg_pool2d(x, 1) + x_squeezed = self._squeeze_excite(x) + x = torch.sigmoid(x_squeezed) * x + + x = self._pointwise(x) + + # Stochastic depth |