summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/quantizer/kmeans.py
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2021-11-21 21:34:53 +0100
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2021-11-21 21:34:53 +0100
commitb44de0e11281c723ec426f8bec8ca0897ecfe3ff (patch)
tree998841a3a681d3dedfbe8470c1b8544b4dcbe7a2 /text_recognizer/networks/quantizer/kmeans.py
parent3b2fb0fd977a6aff4dcf88e1a0f99faac51e05b1 (diff)
Remove VQVAE stuff, did not work...
Diffstat (limited to 'text_recognizer/networks/quantizer/kmeans.py')
-rw-r--r--text_recognizer/networks/quantizer/kmeans.py32
1 files changed, 0 insertions, 32 deletions
diff --git a/text_recognizer/networks/quantizer/kmeans.py b/text_recognizer/networks/quantizer/kmeans.py
deleted file mode 100644
index a34c381..0000000
--- a/text_recognizer/networks/quantizer/kmeans.py
+++ /dev/null
@@ -1,32 +0,0 @@
-"""K-means clustering for embeddings."""
-from typing import Tuple
-
-from einops import repeat
-import torch
-from torch import Tensor
-
-from text_recognizer.networks.quantizer.utils import norm, sample_vectors
-
-
-def kmeans(
- samples: Tensor, num_clusters: int, num_iters: int = 10
-) -> Tuple[Tensor, Tensor]:
- """Compute k-means clusters."""
- D = samples.shape[-1]
-
- means = sample_vectors(samples, num_clusters)
-
- for _ in range(num_iters):
- dists = samples @ means.t()
- buckets = dists.max(dim=-1).indices
- bins = torch.bincount(buckets, minlength=num_clusters)
- zero_mask = bins == 0
- bins_min_clamped = bins.masked_fill(zero_mask, 1)
-
- new_means = buckets.new_zeros(num_clusters, D).type_as(samples)
- new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=D), samples)
- new_means /= bins_min_clamped[..., None]
- new_means = norm(new_means)
- means = torch.where(zero_mask[..., None], means, new_means)
-
- return means, bins