summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/transformer/axial_attention/encoder.py
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2022-09-13 18:46:09 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2022-09-13 18:46:09 +0200
commit143d37636c4533a74c558ca5afb8a579af38de97 (patch)
treeb6740ab7bb954ceea4a2e5e19b7f8553b0039e3c /text_recognizer/networks/transformer/axial_attention/encoder.py
parentfd9b1570c568d9ce8f1ac7258f05f9977a5cc9c8 (diff)
Remove axial encoder
Diffstat (limited to 'text_recognizer/networks/transformer/axial_attention/encoder.py')
-rw-r--r--text_recognizer/networks/transformer/axial_attention/encoder.py90
1 files changed, 0 insertions, 90 deletions
diff --git a/text_recognizer/networks/transformer/axial_attention/encoder.py b/text_recognizer/networks/transformer/axial_attention/encoder.py
deleted file mode 100644
index 1cadac1..0000000
--- a/text_recognizer/networks/transformer/axial_attention/encoder.py
+++ /dev/null
@@ -1,90 +0,0 @@
-"""Axial transformer encoder."""
-
-from typing import List, Optional, Type
-from text_recognizer.networks.transformer.embeddings.axial import (
- AxialPositionalEmbeddingImage,
-)
-
-from torch import nn, Tensor
-
-from text_recognizer.networks.transformer.axial_attention.self_attention import (
- SelfAttention,
-)
-from text_recognizer.networks.transformer.axial_attention.utils import (
- calculate_permutations,
- PermuteToForm,
- Sequential,
-)
-from text_recognizer.networks.transformer.norm import PreNorm
-
-
-class AxialEncoder(nn.Module):
- """Axial transfomer encoder."""
-
- def __init__(
- self,
- shape: List[int],
- dim: int,
- depth: int,
- heads: int,
- dim_head: int,
- dim_index: int,
- axial_embedding: AxialPositionalEmbeddingImage,
- ) -> None:
- super().__init__()
-
- self.shape = shape
- self.dim = dim
- self.depth = depth
- self.heads = heads
- self.dim_head = dim_head
- self.dim_index = dim_index
- self.axial_embedding = axial_embedding
-
- self.fn = self._build()
-
- def _build(self) -> Sequential:
- permutations = calculate_permutations(2, self.dim_index)
- get_ff = lambda: nn.Sequential(
- nn.LayerNorm([self.dim, *self.shape]),
- nn.Conv2d(
- in_channels=self.dim,
- out_channels=4 * self.dim,
- kernel_size=3,
- padding=1,
- ),
- nn.Mish(inplace=True),
- nn.Conv2d(
- in_channels=4 * self.dim,
- out_channels=self.dim,
- kernel_size=3,
- padding=1,
- ),
- )
-
- layers = nn.ModuleList([])
- for _ in range(self.depth):
- attns = nn.ModuleList(
- [
- PermuteToForm(
- permutation=permutation,
- fn=PreNorm(
- self.dim,
- SelfAttention(
- dim=self.dim, heads=self.heads, dim_head=self.dim_head
- ),
- ),
- )
- for permutation in permutations
- ]
- )
- convs = nn.ModuleList([get_ff(), get_ff()])
- layers.append(attns)
- layers.append(convs)
-
- return Sequential(layers)
-
- def forward(self, x: Tensor) -> Tensor:
- """Applies fn to input."""
- x += self.axial_embedding(x)
- return self.fn(x)