summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/transformer/axial_attention/self_attention.py
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2021-11-21 21:31:15 +0100
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2021-11-21 21:31:15 +0100
commit462af7a7bc8d4bbff8ef6ed8882962d68754112a (patch)
tree635a564154fe326ecce5e45706942d003d803e91 /text_recognizer/networks/transformer/axial_attention/self_attention.py
parentde6ecf8ff1c4cd4dfb1a820417e3872cd178c7fd (diff)
Add axial transformer
Diffstat (limited to 'text_recognizer/networks/transformer/axial_attention/self_attention.py')
-rw-r--r--text_recognizer/networks/transformer/axial_attention/self_attention.py45
1 files changed, 45 insertions, 0 deletions
diff --git a/text_recognizer/networks/transformer/axial_attention/self_attention.py b/text_recognizer/networks/transformer/axial_attention/self_attention.py
new file mode 100644
index 0000000..ba162be
--- /dev/null
+++ b/text_recognizer/networks/transformer/axial_attention/self_attention.py
@@ -0,0 +1,45 @@
+"""Axial self attention module."""
+
+import attr
+import torch
+from torch import nn
+from torch import Tensor
+
+
+@attr.s(eq=False)
+class SelfAttention(nn.Module):
+ """Axial self attention module."""
+
+ def __attrs_pre_init__(self) -> None:
+ super().__init__()
+
+ dim: int = attr.ib()
+ dim_head: int = attr.ib()
+ heads: int = attr.ib()
+ dim_hidden: int = attr.ib(init=False)
+ to_q: nn.Linear = attr.ib(init=False)
+ to_kv: nn.Linear = attr.ib(init=False)
+ to_out: nn.Linear = attr.ib(init=False)
+
+ def __attrs_post_init__(self) -> None:
+ self.dim_hidden = self.heads * self.dim_head
+ self.to_q = nn.Linear(self.dim, self.dim_hidden, bias=False)
+ self.to_kv = nn.Linear(self.dim, 2 * self.dim_hidden, bias=False)
+ self.to_out = nn.Linear(self.dim_hidden, self.dim)
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Applies self attention."""
+ q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim=-1))
+ b, _, d, h, e = *q.shape, self.heads, self.dim_head
+
+ merge_heads = (
+ lambda x: x.reshape(b, -1, h, e).transpose(1, 2).reshape(b * h, -1, e)
+ )
+ q, k, v = map(merge_heads, (q, k, v))
+
+ energy = torch.einsum("bie,bje->bij", q, k) * (e ** -0.5)
+ energy = energy.softmax(dim=-1)
+ attn = torch.einsum("bij,bje->bie", energy, v)
+
+ out = attn.reshape(b, h, -1, e).transpose(1, 2).reshape(b, -1, d)
+ return self.to_out(out)