diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-11-21 21:31:15 +0100 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-11-21 21:31:15 +0100 |
commit | 462af7a7bc8d4bbff8ef6ed8882962d68754112a (patch) | |
tree | 635a564154fe326ecce5e45706942d003d803e91 /text_recognizer/networks/transformer/axial_attention/self_attention.py | |
parent | de6ecf8ff1c4cd4dfb1a820417e3872cd178c7fd (diff) |
Add axial transformer
Diffstat (limited to 'text_recognizer/networks/transformer/axial_attention/self_attention.py')
-rw-r--r-- | text_recognizer/networks/transformer/axial_attention/self_attention.py | 45 |
1 files changed, 45 insertions, 0 deletions
diff --git a/text_recognizer/networks/transformer/axial_attention/self_attention.py b/text_recognizer/networks/transformer/axial_attention/self_attention.py new file mode 100644 index 0000000..ba162be --- /dev/null +++ b/text_recognizer/networks/transformer/axial_attention/self_attention.py @@ -0,0 +1,45 @@ +"""Axial self attention module.""" + +import attr +import torch +from torch import nn +from torch import Tensor + + +@attr.s(eq=False) +class SelfAttention(nn.Module): + """Axial self attention module.""" + + def __attrs_pre_init__(self) -> None: + super().__init__() + + dim: int = attr.ib() + dim_head: int = attr.ib() + heads: int = attr.ib() + dim_hidden: int = attr.ib(init=False) + to_q: nn.Linear = attr.ib(init=False) + to_kv: nn.Linear = attr.ib(init=False) + to_out: nn.Linear = attr.ib(init=False) + + def __attrs_post_init__(self) -> None: + self.dim_hidden = self.heads * self.dim_head + self.to_q = nn.Linear(self.dim, self.dim_hidden, bias=False) + self.to_kv = nn.Linear(self.dim, 2 * self.dim_hidden, bias=False) + self.to_out = nn.Linear(self.dim_hidden, self.dim) + + def forward(self, x: Tensor) -> Tensor: + """Applies self attention.""" + q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim=-1)) + b, _, d, h, e = *q.shape, self.heads, self.dim_head + + merge_heads = ( + lambda x: x.reshape(b, -1, h, e).transpose(1, 2).reshape(b * h, -1, e) + ) + q, k, v = map(merge_heads, (q, k, v)) + + energy = torch.einsum("bie,bje->bij", q, k) * (e ** -0.5) + energy = energy.softmax(dim=-1) + attn = torch.einsum("bij,bje->bie", energy, v) + + out = attn.reshape(b, h, -1, e).transpose(1, 2).reshape(b, -1, d) + return self.to_out(out) |