diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2022-02-03 21:39:17 +0100 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2022-02-03 21:39:54 +0100 |
commit | e6717d5a872e236f90977519a76cb35446ab0d5d (patch) | |
tree | 825c6da6b46dea93ec618663a1b7f5ab324998e1 /text_recognizer/networks/transformer/axial_attention/self_attention.py | |
parent | 50fcf0ce31fdad608df26a483d80a83a5738b40f (diff) |
chore: remove axial attention
chore: remove axial attention
Diffstat (limited to 'text_recognizer/networks/transformer/axial_attention/self_attention.py')
-rw-r--r-- | text_recognizer/networks/transformer/axial_attention/self_attention.py | 45 |
1 files changed, 0 insertions, 45 deletions
diff --git a/text_recognizer/networks/transformer/axial_attention/self_attention.py b/text_recognizer/networks/transformer/axial_attention/self_attention.py deleted file mode 100644 index ba162be..0000000 --- a/text_recognizer/networks/transformer/axial_attention/self_attention.py +++ /dev/null @@ -1,45 +0,0 @@ -"""Axial self attention module.""" - -import attr -import torch -from torch import nn -from torch import Tensor - - -@attr.s(eq=False) -class SelfAttention(nn.Module): - """Axial self attention module.""" - - def __attrs_pre_init__(self) -> None: - super().__init__() - - dim: int = attr.ib() - dim_head: int = attr.ib() - heads: int = attr.ib() - dim_hidden: int = attr.ib(init=False) - to_q: nn.Linear = attr.ib(init=False) - to_kv: nn.Linear = attr.ib(init=False) - to_out: nn.Linear = attr.ib(init=False) - - def __attrs_post_init__(self) -> None: - self.dim_hidden = self.heads * self.dim_head - self.to_q = nn.Linear(self.dim, self.dim_hidden, bias=False) - self.to_kv = nn.Linear(self.dim, 2 * self.dim_hidden, bias=False) - self.to_out = nn.Linear(self.dim_hidden, self.dim) - - def forward(self, x: Tensor) -> Tensor: - """Applies self attention.""" - q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim=-1)) - b, _, d, h, e = *q.shape, self.heads, self.dim_head - - merge_heads = ( - lambda x: x.reshape(b, -1, h, e).transpose(1, 2).reshape(b * h, -1, e) - ) - q, k, v = map(merge_heads, (q, k, v)) - - energy = torch.einsum("bie,bje->bij", q, k) * (e ** -0.5) - energy = energy.softmax(dim=-1) - attn = torch.einsum("bij,bje->bie", energy, v) - - out = attn.reshape(b, h, -1, e).transpose(1, 2).reshape(b, -1, d) - return self.to_out(out) |