summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/transformer/axial_attention/utils.py
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2022-09-13 18:46:09 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2022-09-13 18:46:09 +0200
commit143d37636c4533a74c558ca5afb8a579af38de97 (patch)
treeb6740ab7bb954ceea4a2e5e19b7f8553b0039e3c /text_recognizer/networks/transformer/axial_attention/utils.py
parentfd9b1570c568d9ce8f1ac7258f05f9977a5cc9c8 (diff)
Remove axial encoder
Diffstat (limited to 'text_recognizer/networks/transformer/axial_attention/utils.py')
-rw-r--r--text_recognizer/networks/transformer/axial_attention/utils.py79
1 files changed, 0 insertions, 79 deletions
diff --git a/text_recognizer/networks/transformer/axial_attention/utils.py b/text_recognizer/networks/transformer/axial_attention/utils.py
deleted file mode 100644
index 2f5bf7e..0000000
--- a/text_recognizer/networks/transformer/axial_attention/utils.py
+++ /dev/null
@@ -1,79 +0,0 @@
-"""Helper functions for axial attention."""
-from operator import itemgetter
-from typing import Callable, List, Tuple
-
-from torch import nn, Tensor
-
-
-def _map_el_ind(arr: Tensor, ind: int) -> List:
- return list(map(itemgetter(ind), arr))
-
-
-def _sort_indices(arr: Tensor) -> Tuple[List[int], List[int]]:
- indices = [i for i in range(len(arr))]
- arr = zip(arr, indices)
- arr = sorted(arr)
- return _map_el_ind(arr, 0), _map_el_ind(arr, 1)
-
-
-def calculate_permutations(num_dims: int, emb_dim: int) -> List[List[int]]:
- """Returns permutations of tensor."""
- total_dims = num_dims + 2
- axial_dims = [i for i in range(1, total_dims) if i != emb_dim]
-
- permutations = []
-
- for axial_dim in axial_dims:
- last_two_dims = [axial_dim, emb_dim]
- dims_rest = set(range(0, total_dims)) - set(last_two_dims)
- permutation = [*dims_rest, *last_two_dims]
- permutations.append(permutation)
-
- return permutations
-
-
-class PermuteToForm(nn.Module):
- """Helper class for applying axial attention."""
-
- def __init__(
- self,
- fn: Callable,
- permutation: List[List[int]],
- ) -> None:
- super().__init__()
-
- self.fn = fn
- self.permutation = permutation
- _, self.inv_permutation = _sort_indices(self.permutation)
-
- def forward(self, x: Tensor) -> Tensor:
- """Permutes tensor, applies axial attention, permutes tensor back."""
- x = x.permute(*self.permutation).contiguous()
- shape = x.shape
- *_, t, d = shape
-
- # Merge all but axial dimension
- x = x.reshape(-1, t, d)
-
- # Apply attention
- x = self.fn(x)
-
- # Restore original shape and permutation
- x = x.reshape(*shape)
- x = x.permute(*self.inv_permutation).contiguous()
- return x
-
-
-class Sequential(nn.Module):
- """Applies a list of paired functions to input."""
-
- def __init__(self, fns: nn.ModuleList) -> None:
- super().__init__()
- self.fns = fns
-
- def forward(self, x: Tensor) -> Tensor:
- """Applies blocks to input."""
- for f, g in self.fns:
- x = x + f(x)
- x = x + g(x)
- return x